$1^{\text {st }}$ April

1. Stationary waves can be produced in a piece of equipment called a Kundt's tube. This is a horizontal glass tube containing small dry particles such as cork dust or lycopodium powder. A loudspeaker is fitted into one end and can produce sound waves of different frequencies. A piston in the other end allows the length of air to be adjusted so that a loud sound occurs as the air and particles resonate.

a. Small piles of cork dust are seen in a resonating Kundt's tube. Explain if these are going to show positions of nodes or antinodes
Nodes, or this is cher the aupliture of ubations of the air imide the tube is at
b. In terms of λ, state how far apart the piles of dust will be

Note to a mode is equal to half a wardeugth $\therefore \frac{\lambda}{2}$
For a separate 1.20 m length tube, different frequency sound waves are introduced and the distances between piles of lycopodium powder measured.
c. Use the information in the table to calculate values for the speed of sound in air

Frequency $/ \mathrm{Hz}$	Distance $/ \mathrm{cm}$	Speed $/ \mathrm{m} \mathrm{s}^{-1}$
493	34.2	$\mathbf{3 3 7}$
392	45.2	$\mathbf{3 5 4}$
459	37.0	$\mathbf{3 4 0}$

$$
\begin{aligned}
& v=f \lambda \\
& d=\frac{\lambda}{2} \\
& v=2 f d
\end{aligned}
$$

d. Calculate the mean value for the speed and its percentage uncertainty

$$
M_{\text {en }}=344 \text { ni' } \quad \%=\frac{(354-337) \div 2}{344} \times 100=2.5 \%
$$

e. Find out what lycopodium powder is and what properties make it particularly suitable for use in the Kundt's tube
It stags dy and powdery, even in a mast emimanewnt
$2^{\text {nd }}$ April

1. Calculate the reading on the high-resistance voltmeters V_{a} and V_{b}.

2. A student holds a vibrating tuning fork with frequency 425 Hz over a column of air formed in a vertical glass tube. They adjust the length of the air column by moving the glass tube vertically inside a measuring cylinder containing water. They first hear the air resonating when the length of air is 20 cm (at the fundamental frequency).

Calculate a value for the speed of sound from this data.

3. Complete the table for the circuit below (the battery has negligible internal resistance):

$$
V=I R \quad I=\frac{V}{R} \quad R=\frac{V}{S}
$$

Resistor	R / Ω	V / V	$1 / A$
a.	10	$\mathbf{4 . 0}$	$\mathbf{0 . 4 0}$
b.	$\mathbf{2 7}$	8.0	$\mathbf{0 . 3 0}$
c.	$\mathbf{6 0}$	$\mathbf{6 . 0}$	$\mathbf{0 . 1 0}$
d.	$\mathbf{2 0}$	2.0	0.10

$3^{\text {rd }}$ April

1. A micrometer (giving readings with an absolute uncertainty of $\pm 0.01 \mathrm{~mm}$) is used to measure the thickness of aluminium foil. This gives a value of 0.62 mm . Calculate the percentage uncertainty in this measurement and suggest how a more accurate value could be recorded.

$$
\% U=\frac{0.01}{0.62} \times 100=1.6 \%
$$

2. Define:
a. A standing wave

Sec the dyurition in the late of the back
b. An antinode
3. Complete the table for the circuit below (the battery has negligible internal resistance):

$$
V=I R \quad I=\frac{V}{R} \quad R=\frac{V}{S}
$$

$4^{\text {th }}$ April

1. A micrometer is used to measure the diameter of a wire. Three readings are taken to ensure that the wire is circular in cross-sectional area.

Calculate the:
a. Mean diameter in mm

$$
(1.84+1.89+1.83) \div 3=1.85 \mathrm{~mm}
$$

b. Absolute uncertainty in the diameter

$$
(1.89-1.83) \div 2= \pm 0.03 \mathrm{~mm}
$$

c. Percentage uncertainty in the diameter

$$
\% U=(0.03 \div 1.85) \times 100=1.6 \%
$$

d. Cross-sectional area in m^{2}

$$
A=\pi d^{2} / 4=\pi \times\left(1.85 \times 10^{-3}\right)^{2} \div 4=2.69 \times 10^{-6} \mathrm{~m}^{2}
$$

e. Percentage uncertainty in the area

$$
2 \times 1.6=3.2 \%
$$

f. Uncertainty in the area

$$
\begin{aligned}
& \text { tanyyinthe area - } \\
& 3.2 \% \text { of } 2.69 \times 10^{-6} \mathrm{~m}^{2} \text { is } \pm 8.60 \times 10^{-8} \mathrm{~m}^{2} .
\end{aligned}
$$

$5^{\text {th }}$ April

1. A cell with an EMF of 12.0 V and internal resistance of 2.0Ω is placed in series with a 22Ω resistor.

Calculate the percentage of the power output wasted as thermally in the cell.

$$
\begin{aligned}
& P=I^{2} R \quad \eta=\frac{P_{\text {cell }}}{P_{\text {tote }}} \times 100=\frac{r}{r+R} \times 100=\frac{2.0}{2.0+22} \times 100=8.3 \% \\
& \therefore P \propto R
\end{aligned}
$$

2. Calculate the reading on the zero-resistance ammeters A_{a} and A_{b}.

Shot limit : $A_{b}=0.0 \mathrm{~A}$

$$
I=\frac{V}{R}=\frac{6.0}{2.0}=3.0 \mathrm{~A}
$$

3. Calculate the extension produced if a 40 N load is applied to a 5.0 m length of steel wire with a Young modulus of 200 GPa and a diameter of 0.50 mm .

$$
\begin{aligned}
& E=\frac{\sigma}{\varepsilon}=\frac{F / A}{e / L}=\frac{F L}{e A} \quad e=\frac{F L}{E A} \quad A=\frac{\pi d^{2}}{4} \\
& e=\frac{4 F L}{E \pi d^{2}} \\
& e=\frac{4 \times 40 \times 5.0}{200 \times 10^{9} \times \pi \times\left(0.50 \times 10^{-3}\right)^{2}}=5.1 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

$6^{\text {th }}$ April

1. A 10.0 m copper wire of diameter 0.273 mm is clamped at one end and stretched (across a lab) and over a pulley at the other end using hanging masses. A pointer on the wire allows the extension to be measured.

The results are shown in the table:

Load / N	1.0	2.0	3.0	4.0	5.0
Extension / mm	1.4	2.8	4.3	5.7	7.1

a. Use the data to plot a graph
b. Calculate the gradient with an appropriate unit

$$
\text { Gradient }=\frac{5.0-0}{7.1-0}=0.70 \mathrm{Nmmi}^{-1}
$$

c. Use the gradient from your graph and values given in the question to calculate a value for the Young modulus of copper in GPa

$$
E=\frac{F L}{e A} \prec A=\frac{\pi d^{2}}{4}
$$

$$
\begin{gathered}
E=\frac{F}{e} \cdot \frac{4 L}{J d^{2}}=G_{\text {Indict }} \times \frac{4 \times 10.0}{\pi \times\left(0.273 \times 10^{-3}\right)^{2}} \\
E=120 \mathrm{GPa}
\end{gathered}
$$

$6^{\text {th }}$ April

$7^{\text {th }}$ April - Part 1

1. An alternative method to determine the Young modulus for a material is to use Searle's apparatus. In this case, a steel vertical wire can be loaded with masses up to 10.0 kg . A second reference wire, also made from steel, hangs next to the test wire and (in this example) has a vernier scale allowing measurement of the extension produced to the nearest 0.01 mm .

The diameter of the test wire is recorded, in mm , as $0.37,0.38$, 0.38 and 0.36 .
a. Calculate the average diameter and its absolute uncertainty

$$
\begin{aligned}
0.37 \mathrm{~mm} \quad(0.38-0.36) \div 2 & = \pm 0.01 \mathrm{~mm} \\
& =3.7 \times 10^{-4} \mathrm{~m}
\end{aligned}
$$

b. Calculate the percentage uncertainty in the diameter

$$
\% U=\frac{0.01}{0.37} \times 100=2.7 \%
$$

c. Suggest the piece of equipment that could have recorded these measurements

Micrancter
d. Describe how these measurements of the diameter are taken to improve accuracy
Repeated, at difforut paints and in different directions to check its circular
e. Calculate the cross-sectional area with its uncertainty

$$
\begin{aligned}
& A=\frac{\pi d^{2}}{4}=\frac{\pi \times\left(3.7 \times 10^{-4}\right)^{2}}{4}=\frac{1.1 \times 10^{-7}}{} \mathrm{~m}^{2} \\
& 1.1 \times 10^{-7} \times\left(\frac{2 \times 2.7}{100}\right)= \pm 5.8 \times 10^{-9} \mathrm{~m}^{2} \\
& (\% A=2 \times \% d)
\end{aligned}
$$

$7^{\text {th }}$ April - Part 2

1. A graph of load against extension is drawn using the recorded data and shows a directly proportional relationship.
f. If the Young modulus of steel is 210 GPa and the wire was initially 2.00 m long, calculate the expected extension for a 10.0 kg mass hung on the wire

$$
e=\frac{F L}{E A}=\frac{10.0 \times 9.81 \times 2.00}{210 \times 10^{9} \times 1.1 \times 10^{-7}}=8.5 \times 10^{-3} \mathrm{~m}
$$

g. Explain two safety precautions to allow this practical to be undertaken safely

- Eye protection, in case wire saps into eye
- Cuschia, in core they fall ar the floor

Searle's Apparatus

Some schools have this equipment that can be used to measure the Young / Young's modulus of a material.

There are a few different types available. Some have a simple linear vernier scale between the two wires. Others have a spirit level that can be adjusted until it is perfectly level (as illustrated to the right).

When the test wire is loaded it will extend slightly, the spirit level can then be adjusted until it is once again horizontal using the screw gauge which shows the distance moved. This allows accurate measurements of extension to be recorded.

$8^{\text {th }}$ April

1. Measurements were taken to investigate a piece of nichrome wire. Calculate the percentage uncertainty in the calculated value of resistivity:

$$
\begin{aligned}
& \rho=\frac{R A}{L} \\
& p=\frac{R \pi d^{2}}{4 l} \\
& \text { 2. Define: } \\
& \text { a. Tensile strain } \\
& \% \rho=\% R+(2 \times \% d)+\% L=1.9+(2 \times 2.2)+0.3 \\
& =6.6 \%
\end{aligned}
$$

b. Young modulus
3. An annealed copper wire has a diameter of 0.500 mm . The resistivity of this copper is $1.77 \times 10^{-8} \Omega \mathrm{~m}$.

Calculate the length of this wire that has a resistance of 10.0Ω.

$$
\begin{gathered}
L=\frac{R \pi d^{2}}{4 p}=\frac{10.0 \times \pi \times\left(0.500 \times 10^{-3}\right)^{2}}{4 \times 1.77 \times 10^{-8}} \\
L=111 \mathrm{~m}
\end{gathered}
$$

$9^{\text {th }}$ April

1. A student is determining the resistivity of nichrome. They are using a wire with SWG value 30 which has a diameter of 0.315 mm . They use a multimeter set up as an ohmmeter which can record resistance to the nearest ohm to record the following data:

Length / cm	20	40	60	80	100
Resistance $/ \Omega$	3	5	8	10	12

a. Plot a graph of resistance against length on the axes to the right. Include error bars for the values of resistance
b. Calculate the gradient of the line of best fit and, using the error bars, calculate the percentage uncertainty in the gradient

$$
\begin{aligned}
& \text { Gradient best }^{=}=\frac{12.5-0}{1.0-0}=12.5 \mathrm{Jm}^{-1} \\
& G_{\text {Gradient }}^{\text {wort }}
\end{aligned}=\frac{11-2.2}{1.0-0}=8.8 \mathrm{Jm}^{-1} .
$$

c. Using the value for your gradient and the diameter given above (assuming zero percentage uncertainty in this value), calculate a resistivity value for nichrome including its uncertainty

$$
\rho=\frac{R A}{L}=\frac{R}{L} \cdot A=\operatorname{gradient} \times A=12.5 \times \frac{\pi \times\left(0.315 \times 10^{-3}\right)^{2}}{4}
$$

$$
\rho=9.7 \times 10^{-7} l_{\mathrm{m}}
$$

30% of $9.7 \times 10^{-7} \mathrm{~lm}$ is $\pm 2.9 \times 10^{-7} \mathrm{dm}$

$9^{\text {th }}$ April

ALevelPhysicsOnline.com

$10^{\text {th }}$ April

1. Explain the difference between the elastic limit and the limit of proportionality and state which one usually is reached first.

2. Calculate the elastic strain energy stored $\underset{\sim}{\boldsymbol{X}}$ in a spring which has been subject to a tensile force of 200 N resulting in an extension of 0.75 m

$$
E_{e}=\frac{1}{2} F_{x}=\frac{1}{2} \times 200 \times 0.75=75 \mathrm{~J}
$$

3. Complete the table for the circuit below (each cell has negligible internal resistance and an EMF of 1.2 V):

Resistor	R / Ω	V / mV	$1 / \mathrm{mA}$
a.	10	$\mathbf{7 0 0}$	$\mathbf{7 0}$
b.	6.0	$\mathbf{4 2 0}$	$\mathbf{7 0}$
c.	5.0	$\mathbf{7 8}$	$\mathbf{1 6}$
d.	5.0	$\mathbf{7 8}$	$\mathbf{1 6}$
e.	2.0	$\mathbf{7 8}$	$\mathbf{3 9}$

$11^{\text {th }}$ April

1. Write down the value and units for the following:
a. The rest mass of an electron

c. Planck constant
2. Describe, in terms of material properties, what is meant by:
a. Brittle
b. Hard
C. Stiff
3. A metal wire of original length 3.5 m and a diameter of 0.90 mm is extended by 13 cm when a force of 100 N is applied. Calculate:
a. The tensile strain

$$
\varepsilon=\frac{x}{L}=\frac{0.13}{3.5}=0.037
$$

b. The tensile stress

$$
\begin{aligned}
\sigma=\frac{F}{A}=\frac{4 F}{J d^{2}} & =\frac{4 \times 100}{J \times\left(0.10 \times 10^{-3}\right)^{2}} \\
\sigma & =1.6 \times 10^{8} \mathrm{~Pa}
\end{aligned}
$$

$12^{\text {th }}$ April - Part 1

1. Draw in a line of best fit for the following data:

b.

d.

$12^{\text {th }}$ April - Part 2

2. Draw in a 'line of best fit' and a 'worst acceptable' line that passes through the error bars for the following data:

d.

louse the arcanely
$13^{\text {th }}$ April
3. A 24.0 cm spring extends to 30.0 cm when a force of 7.0 N is applied. Calculate:
a. The spring constant

$$
k=\frac{F}{x}=\frac{7.0}{0.060}=1.2 \times 10^{2} \mathrm{Nm}^{-1}
$$

b. The elastic strain energy stored in the spring

$$
E_{e}=\frac{1}{2} F_{x}=\frac{1}{2} \times 7.0 \times 0.060=0.21 \mathrm{~J}
$$

2. Complete the following table:

$14^{4 h}$ April

1. A spherical steel ball bearing is held by an electromagnet vertically above a trap door switch. When a switch is pressed, the current to the electromagnet is switched off and the ball drops. Pressing the switch also turns starts a digital timer. When the ball bearing hits the trap door switch this opens a second circuit which stops the stop clock.

The procedure is repeated for several heights and a mean time is calculated for each height.

Height $/ \mathrm{m}$	Mean time $/ \mathrm{s}$	Time $^{2} / \mathrm{s}^{2}$
0.30	0.29	0.084
0.60	0.37	0.14
0.90	0.45	$\mathbf{0 . 2 0}$
1.20	0.52	$\mathbf{0 . 2 7}$
1.50	0.57	$\mathbf{0 . 3 2}$

a. Complete the table
b. Plot a graph of time ${ }^{2}$ against height
c. Calculate the gradient

$$
\text { Gradient }=\frac{0.32-0.02}{1.50-0}=0.20 \mathrm{~s}^{2} \mathrm{~m}^{-1}
$$

d. Use the gradient value to determine a value for \mathbf{g}, the acceleration of free fall
s. h
$u=0$
v
$a=g$
t

$$
\begin{aligned}
& h=\frac{1}{2} g t^{2} \\
& g=2 \frac{h}{t^{2}}
\end{aligned}
$$

$\int \quad \frac{t^{2}}{h}$

$g=2 \times\left(\frac{1}{\text { Gradient }}\right) \quad g=10 \mathrm{~ms}^{-2}$
e. Suggest a reason the line on the graph does not pass through the origin

Systematic error in timing

$14^{\text {th }}$ April

$15^{\text {ht }}$ April

1. A large marble is placed on a smooth slope as shown. The slope is at an angle θ to the horizontal.
a. Add labels to show the weight, W , and components of the weight parallel and perpendicular to the slope, $W \sin \theta$ and $W \cos \theta$, respectively.

A student investigates the acceleration of the marble by recording three repeat values for the time it takes the marble to roll 30 cm down the slope from rest.
b. Calculate the mean time and use one of the surat equations to calculate the acceleration in the table below

c. Complete the last column by calculating values of $\mathbf{g} \sin \theta$ (where $g=9.81 \mathrm{Nkg}^{-1}$)
d. Compare the values in the last two columns

$$
a<g \sin \theta
$$

e. Suggest a factor that is likely to reduce the measured acceleration compared to the theoretical acceleration in this experiment

Friction on the slope

$16^{\text {th }}$ April

1. A student is using a light gate and a double interrupt card to find a value for the acceleration due to gravity.

The light gate is clamped so that the light beam is horizontal. The double interrupt card is shown in the diagram to the right. The square outer card has sides of length 15.0 cm and a 5.0 cm square hole in the centre.

The first time recorded by a data logger as the card between P and Q interrupts the beam is 100 ms

A short time later a time of 34 ms is recorded as the card
 between R and S passes through the light gate.

Calculate the:
a. The initial velocity as the bottom strip of card $(P Q)$ interrupts the beam

$$
u=\frac{s}{t}=\frac{0.050}{0.100}=0.50 \mathrm{~ms}^{-1}
$$

b. The final velocity as the top strip of card (RS) interrupts the beam

$$
V=\frac{s}{t}=\frac{0.050}{0.034}=1.47 \mathrm{~ms}^{-1}
$$

c. The acceleration of the card

$$
\begin{array}{lr}
s=0.10 \mathrm{~m} & v^{2}=u^{2}+2 a s \\
u=0.50 \mathrm{~ms}^{-1} & g=\frac{v^{2}-u^{2}}{2 \mathrm{~s}}=\frac{1.47^{2}-0.50^{2}}{2 \times 0.10} \\
v=1.47 \mathrm{~ms}^{-1} & g=g .6 \mathrm{~ms}^{-2}
\end{array}
$$

d. Suggest two advantages of attaching small masses along the bottom edge of the double interrupt card before it is dropped

$17^{\text {th }}$ April

1. A wire of original length 1.7 m and diameter $240 \mu \mathrm{~m}$ extends by 3.0 cm when tensioned by a force of 29 N . Calculate:
a. The elastic strain energy stored in the wire
b. The stiffness of the wire

$$
E_{e}=\frac{1}{2} F_{x}=\frac{1}{2} \times 29 \times 0.030=0.44 \mathrm{~J}
$$

$$
k=\frac{F}{x}=\frac{29}{0.030}=970 \mathrm{Nm}^{-1}
$$

2. Define:
a. Acceleration
b. Gravitational field strength
3. Sketch, and explain, the shape of lines on the stress-strain graph for:
a. Line A: a brittle material with a high Young modulus value
b. Line B: a tough material with a lower Young modulus value

$18^{\text {th }}$ April

1. Write the unit more commonly used for these quantities (shown in their base units):
a. s^{-1}
H_{2}
b. $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$
N
c. $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$
J
2. A jogger runs at an average speed of $3.0 \mathrm{~m} \mathrm{~s}^{-1}$. They go for a 10 minute run. Calculate:
a. The distance they run in 10 minutes

$$
x=v t=3.0 \times 10 \times 60=1800 \mathrm{~m}
$$

b. The magnitude of their displacement if they run around a 400 m circular track

$$
\frac{1800}{400}=4.5 \text { laps }
$$

$$
\begin{aligned}
& c=\pi s \\
& s=\frac{400}{\pi}=127=1.3 \times 10^{2} \mathrm{~m}
\end{aligned}
$$

3. An average value for the gravitational field strength on Earth is $9.81 \mathrm{Nkg}^{-1}$ which results in an acceleration of free fall of $9.81 \mathrm{~m} \mathrm{~s}^{-2}$.
a. Assuming there is no air resistance, calculate the velocity of a 2.8 kg house brick 60 s after it is dropped from a stationary helium balloon and how far it has fallen
i. Velocity S

$$
s=y t+\frac{1}{2} a t^{2}
$$

$$
s=\frac{1}{2} \times 9.81 \times 60^{2}=17658=1.8 \times 10^{4} \mathrm{~m}
$$

b. Explain whether it is sensible to neglect air resistance in examples like this

No!

$19^{\text {th }}$ April

1. Write the unit more commonly used for these quantities (shown in their base units):
a. $\mathrm{kg} \mathrm{m} \mathrm{m}^{2} \mathrm{~s}^{2}$

> J
b. $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} \quad J S^{-1}=W$
c. As
c
2. A rock of mass 0.20 kg falls from rest at a height of 15 m above the surface of the Moon. Calculate the velocity of the rock as it hits the Moon's surface.
$s=15 \mathrm{~ms}^{-1}$
$u=0 \mathrm{~ms}^{2}$
$v=1.6 \mathrm{~ms}^{-2}$
$v^{2}=y^{x}+2 a s$
$v=\sqrt{2 \times 1.6 \times 15}=6.9 \mathrm{~ms}^{-1}$
t
3. The graph below shows the force-extension graph typical of a sample of metal when subjected to a tensile force.
a. Describe what would happen if the force was removed at point \mathbf{C} as the metal was unloaded

Some plastic deformation

b. Sketch the line on the graph to show this unloading

$20^{\text {th }}$ April - Part 1

1. A student is measuring the extension, e, when a force is applied to combinations of identical springs.

Initially they use a single spring and then two springs in series.
The table shows the extension, in m, for a single spring and for two series springs.

Force $/ \mathrm{N}$	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
$\mathrm{e}_{\text {single }} / \mathrm{m}$	0.03	0.07	0.10	0.13	0.16	0.20	0.28	0.41
$\mathrm{e}_{\text {series }} / \mathrm{m}$	0.07	0.13	0.20	0.27	0.34	0.40	0.46	0.52

a. Plot the data on the graph below and draw lines of best fit

$20^{\text {th }}$ April - Part 2

1. b. Calculate values of the spring constant for:
i. The single spring

$$
k=\frac{F}{e}=\frac{1}{\text { Gradient }}=30 \mathrm{Nm}^{-1}
$$

ii. Two springs in series

$$
=15 \mathrm{Nm}^{-1}
$$

c. From the graph, determine the elastic limit of the springs used

$$
6.0 \mathrm{~N}
$$

d. Predict the value of the combined spring constant for two springs in parallel

$$
2 \times \text { part b. i. }=2 \times 30=60 \mathrm{Nm}^{-1}
$$

e. Sketch and label a force-extension graph for
i. Two springs in parallel
ii. Three springs in parallel
iii. Three springs in series

$21^{\text {st }}$ April

1. One of Newton's laws is often mistakenly given simply as the equation $\mathrm{F}=\mathrm{ma}$. State Newton's second law in full.

$$
F \propto \frac{\Delta p}{\Delta t}
$$

2. In the diagrams below, each cell has an EMF of 1.2 V and negligible internal resistance.

Calculate the total EMF for each battery below:
a.

$=2.4 \mathrm{~V}$
c.

b.

d.

3. In the circuit below, where each cell has negligible internal resistance and an EMF of 1.2 V , all the resistors are identical and have a resistance of 10Ω.

Complete the table.

Resistor	v / v	$1 / \mathrm{mA}$
a.	0.66	66
b.	0.66	66
c.	1.3	130
d.	0.44	44
e.	0.44	44
f.	0.44	44

$22^{\text {nd }}$ April

1. A thick rubber band was hung on a clamp and stand. Extension values were then measured using a ruler and set square as it was loaded, and then unloaded, with masses.
a. Explain why the use of a set square helps to improve the accuracy of the results taken
b. Plot the loading and unloading curve for the rubber band using the data below

	Extension / m	
Load / N	Loading	Unloading
0.0	0.00	0.00
5.0	0.01	0.03
10.0	0.03	0.08
15.0	0.05	0.13
20.0	0.08	0.19
25.0	0.13	0.24
30.0	0.20	0.27
35.0	0.27	0.29
40.0	0.30	0.30

c. Use your graph to estimate the area enclosed between the two curves

$$
\approx 7.26-5.10=2.16=2.2 \mathrm{~J}
$$

d. Describe what this area represents

Energy dissipated thermally

e. Explain the significance of the graph starting and finishing at the origin

$22^{\text {nd }}$ April

$23^{\text {rd }}$ April

1. The velocity of a 420 g football reduces from $20 \mathrm{~m} \mathrm{~s}^{-1}$ to $0 \mathrm{~m} \mathrm{~s}^{-1}$ in a time of 400 ms . Calculate the average force applied to the football.

$$
F=\frac{\Delta p}{\Delta t}=\frac{(0.420 \times 20)}{400 \times 10^{-3}}=21 \mathrm{~N}
$$

2. Each cell has an EMF of 1.2 V and internal resistance of 0.30Ω. Calculate the total EMF and internal resistance for the batteries below:
a.

b.

c.

d.

3. Three forces, each of 12 N , can be exerted in any direction. Sketch the configuration (including angles) that will give the maximum magnitude force, the minimum force and a force halfway between these two values.

$24^{\text {th }}$ April
4. Calculate the moment of a couple of two 30 N forces acting in opposite directions on opposite sides of a steering wheel with a diameter of 30 cm .

$$
30 \uparrow \varlimsup_{30} M=0.30 \rightarrow F_{d}=30 \times 0.30=9.0 \mathrm{Nm}
$$

2. Determine the values of \mathbf{a} and \mathbf{b} using the gradient and y-intercept.

$25^{\text {th }}$ April

1. Write the unit more commonly used for these quantities (shown in their base units):
a. $\mathrm{kg} \mathrm{m} \mathrm{m}^{-2}$

J

b. As
C
c. $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-1}$
$J C^{-1}=V$
2. Determine the values of \mathbf{a} and \mathbf{b} using the gradient and values from the graph.

S

$$
\begin{aligned}
y=m x+c \quad c=y-m x & =0.5-(1.4 \times 1.5) \\
c & =-1.6 \quad \therefore \quad b=-1.6
\end{aligned}
$$

$26^{\text {th }}$ April

1. Write the unit more commonly used for these quantities expressed in their base units:
a. $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$
$\mathrm{Nm}^{-2}=\mathrm{Pa}$
b. $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-1}$
V
c. $\operatorname{kgm}^{2} s^{-3} \mathrm{~A}^{-2} \quad V A^{-1}=\Omega$
2. Define:
a. Elastic behaviour
b. Plastic behaviour
3. A cell is connected in series with an ammeter and a resistor. A voltmeter is connected in parallel with the resistor. The readings on the two meters are 0.25 A and 1.875 V .

The resistor is then replaced with one of a different value and the readings change to 0.50 A and 1.750 V .

Calculate the values of the EMF and the internal resistance of the cell.

0.25 A
1.875 V
$E=V+I_{r}$
$E=1.875+0.25 r$
$2 E=3.750+0.50 r$ (1)
0.50 A
1.750V
$E=V+I_{r}$
$E=1.750+0.50 r(2)$
(1) -(2) $2 E-E=3.750+0.50 r-1.750-0.80 r$
$E=2.00 \mathrm{~V}$

$$
r=\frac{E-V}{I}=\frac{2.00-1.875}{0.25}=0.50 \mathrm{l}
$$

$27^{\text {th }}$ April

1. A student connects a cell in series with a variable resistor and an ammeter. They connect a voltmeter in parallel with the cell. They alter the value of the variable resistor and obtain the results below.

Terminal PD / V	0.30	0.50	0.64	0.83	0.98	1.17
Current / A	1.50	1.25	1.07	0.83	0.65	0.47

a. Plot the data below, with the current on the x-axis

b. Calculate the gradient and intercept of the graph and state what these values represent

$$
\text { Gradient }=\frac{0.25-1.5}{1.5-0}=\frac{-0.83}{y-\text { interest }=}=\frac{-r}{1.5}=E \quad(E=0.83 \Omega)
$$

c. State the values of the intercept and gradient you would expect in the following cases:
i. Two of the same cells in series

$$
c=3.0 \quad m=-1.7
$$

ii. Two of the same cells in parallel

$$
c=1.5 \quad m=-0.42
$$

$28^{\text {th }}$ April

1. A student is investigating the power output from a resistor connected to a battery that is made up of four cells in series, each with EMF 1.50 V and internal resistance 1.50Ω.
a. Write down the EMF and internal resistance of the battery

$$
4 \times 1.50=6.00 \mathrm{~V} \quad 4 \times 1.50=6.00 \lambda
$$

b. State the equation used to calculate power output when a component has a current, I, passing through it and a potential difference, V , across it

$$
P=V I
$$

The student attaches the battery to an ammeter and a variable resistor in series. They then change the value of the external resistance, R, in the circuit.
c. Complete the table below by calculating the total resistance in the circuit, the current, the terminal PD, and the power output in the external part of the circuit. The first column is already completed $E=I(R+r) \quad I=E \div(R+r) \quad V=E-I r$

External resistance, R / Ω	2.00	4.00	6.00	8.00	10.0	12.0
Total resistance $(R+r) / \Omega$	8.00	10.00	12.00	14.00	$\mathbf{1 6 . 0 0}$	$\mathbf{1 8 . 0 0}$
Current $/ \mathrm{A}$	0.750	0.000	0.500	$\mathbf{0 . 4 2 9}$	$\mathbf{0 . 3 7 5}$	$\mathbf{0 . 3 3 3}$
Terminal PD $/ \mathrm{V}$	1.50	2.40	$\mathbf{3 . 0 0}$	$\mathbf{3 . 4 3}$	$\mathbf{3 . 7 5}$	$\mathbf{4 . 0 0}$
Power / W $\mathbf{P}=\mathbf{V I}$	1.13	$\mathbf{1 . 4 4}$	$\mathbf{1 . 5 0}$	$\mathbf{1 . 4 7}$	$\mathbf{1 . 4 1}$	$\mathbf{1 . 3 3}$

d. Use the data in the table to plot a graph of power against external resistance, R, and deduce from your line of best fit the value of R for maximum power

29th April

1. Sketch the IV characteristics of a :
a. Resistor

b. Lamp

c. Diode

2. Define:
a. Ohm's law
b. Resistance
3. A uniform 104 g metre ruler is supported at each end by triangular pieces of metal at points A and B as shown in diagram below. A 250 g mass is supported with the centre of mass exactly 67.0 cm from end B.

a. Calculate the total anti-clockwise moment of the ruler and mass about the point B

$$
\sigma_{M}=(0.250 \times 9.81 \times 0.670)+(0.104 \times 9.81 \times 0.500)=2.15 \mathrm{Nm}
$$

b. Calculate the force provided by support A

$$
\widehat{M}=\curvearrowleft \quad F_{A} \times 1.00=2.15 \quad F_{A}=2.15 \mathrm{~N}
$$

30 th April

1. Calculate the work done by the forces in the diagrams below if the object moves 1.5 m to the right.
a.

$$
W=F_{s}=5.0 \times 1.5=7.5 \mathrm{~J}
$$

b.

2. A high jumper runs at $8.0 \mathrm{~m} \mathrm{~s}^{-1}$. They take off jumping vertically into the air, and their kinetic energy as they leave the ground is 65% of their kinetic energy in their run up. Calculate how high they could they jump if they have a mass of 75 kg .

$$
\begin{aligned}
& E_{k} \rightarrow=\frac{1}{2} m v^{2}=\frac{1}{2} \times 75 \times 8.0^{2}=2400 \mathrm{~J} \\
& E_{k} \uparrow=0.65 \times 2400=1560 \mathrm{~J} \\
& E_{p}=E_{k} \uparrow \quad h=\frac{1560}{75 \times 9.81}=2.1 \mathrm{~m}
\end{aligned}
$$

3. A uniform 104 g metre ruler is supported by triangular pieces of metal at A and B . It supports a 600 g mass as shown below.

a. Calculate the force provided by supportóA

$$
\widehat{M}=\tilde{\mu}^{2} \quad F_{A} \times 0.640=(0.104 \times 9.81 \times 0.250)+(0.600 \times 9.81 \times 0.220)
$$

(Moments about B)

$$
F_{A}=2.42 \mathrm{~N}
$$

b. Calculate the force provided by support B

$$
\begin{array}{r}
F \uparrow=F \downarrow \quad 2.42+F_{B}=(0.104+0.600) \times 9.81 \\
F_{B}=4.48 \mathrm{~N}
\end{array}
$$

