

Edexcel Physics – 9PH0

Module 5: Waves and the Particle Nature of Light

You should be able to demonstrate and show your understanding of:	Progress and understanding:			
	1	2	3	4
Waves and the Particle Nature of Light				
Understand the terms amplitude, frequency, period, speed and wavelength				
The wave equation:				
$v = f\lambda$				
How to describe longitudinal waves in terms of pressure variation and the displacement of molecules				
How to describe transverse waves				
Graphs representing transverse and longitudinal waves including standing/stationary waves, and how to interpret them				
CORE PRACTICAL 6: Determine the speed of sound in air using a 2-beam oscilloscope, signal generator, speaker and microphone				
What is meant by wavefront, coherence, path difference, superposition, interference and phase				
The relationship between phase difference and path difference				
What is meant by a standing/stationary wave and understand how such a wave is formed, know how to identify nodes and antinodes				
The equation for the speed of a transverse wave on a string:				
$v = \sqrt{\frac{T}{\mu}}$				
CORE PRACTICAL 7: Investigate the effects of length, tension and mass per unit length on the frequency of a vibrating string of wire				
How to use the equation for intensity of radiation: $I = \frac{P}{A}$				

You should be able to demonstrate and show your understanding of:		Progress and understanding:			
	1	2	3	4	
Interfaces between medium 1 and medium 2 where:					
$n_1 sin\theta_1 = n_2 sin\theta_2$ where $n = \frac{c}{v}$					
Critical angle using $\sin C = \frac{1}{n}$					
Whether total internal reflection will occur at an interface					
How to measure the refractive index of a solid material					
Understand the term focal length of converging and diverging lenses					
Be able to use ray diagrams to trace the path of light through a lens and locate the position of an image					
The equation:					
$P = \frac{1}{f}$					
The equation for the power of thin lenses: $P = P1 + P2 + \cdots + Pn$					
Know and understand the terms real image and virtual image					
The equation for a thin converge or diverging lens:					
$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$					
Magnification and that magnification = image height / object height and:					
$m = \frac{v}{u}$					
Plane polarisation and what is meant by it					
Diffraction and the use of Huygens' obstruction to explain what happens to a wave when it meets an obstruction or slit					
Diffraction gratings, and the equation:					
$n\lambda = d\sin\theta$					
CORE PRACTICAL 8: Determine the wavelength of light from a laser or other light source using a diffraction grating.					
How diffraction experiments provide the evidence for wave nature of electrons					

You should be able to demonstrate and show your understanding of:	Progress and understanding:			
	1	2	3	4
The use of the equation:				
$\lambda = rac{h}{p}$				
Waves and that they can be transmitted and reflected at an interface between media				
How pulse-echo technologies can provide information about the position of an object				
How the behaviour of electromagnetic radiation can be described in terms of the wave model and photon model , along with their development over time				
The equation:				
E=hf that relates the photon energy to the frequency of the wave				
Absorption of photons and how this results in the emission of a photoelectron				
The terms threshold frequency and work function and use of the equation:				
$hf = \phi + \frac{1}{2}mv^2$				
The electronvolt (eV) to express small energies				
Photoelectric effect and how it provides the evidence for the particle nature of EM radiation				
Atomic line spectra in terms of <i>transitions between discrete energy levels</i> and how to calculate the frequency of radiation that could be emitted / absorbed between energy levels				

