Edexcel Physics - 9PH0

Module 5: Waves and the Particle Nature of Light

You should be able to demonstrate and show your understanding of:	Progress and understanding:			
	1	2	3	4
Waves and the Particle Nature of Light				
Understand the terms amplitude, frequency, period, speed and wavelength				
The wave equation: $v=f \lambda$				
How to describe longitudinal waves in terms of pressure variation and the displacement of molecules				
How to describe transverse waves				
Graphs representing transverse and longitudinal waves including standing/stationary waves, and how to interpret them				
CORE PRACTICAL 6: Determine the speed of sound in air using a 2-beam oscilloscope, signal generator, speaker and microphone				
What is meant by wavefront, coherence, path difference, superposition, interference and phase				
The relationship between phase difference and path difference				
What is meant by a standing/stationary wave and understand how such a wave is formed, know how to identify nodes and antinodes				
The equation for the speed of a transverse wave on a string: $v=\sqrt{\frac{T}{\mu}}$				
CORE PRACTICAL 7: Investigate the effects of length, tension and mass per unit length on the frequency of a vibrating string of wire				
How to use the equation for intensity of radiation: $I=\frac{P}{A}$				

You should be able to demonstrate and show your understanding of:	Progress and understanding:			
	1	2	3	4
Interfaces between medium 1 and medium 2 where: $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \text { where } n=\frac{c}{v}$				
Critical angle using $\sin C=\frac{1}{n}$				
Whether total internal reflection will occur at an interface				
How to measure the refractive index of a solid material				
Understand the term focal length of converging and diverging lenses				
Be able to use ray diagrams to trace the path of light through a lens and locate the position of an image				
The equation: $P=\frac{1}{f}$				
The equation for the power of thin lenses: $P=P 1+P 2+\cdots+P n$				
Know and understand the terms real image and virtual image				
The equation for a thin converge or diverging lens: $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$				
Magnification and that magnification = image height / object height and: $m=\frac{v}{u}$				
Plane polarisation and what is meant by it				
Diffraction and the use of Huygens' obstruction to explain what happens to a wave when it meets an obstruction or slit				
Diffraction gratings, and the equation: $n \lambda=d \sin \theta$				
CORE PRACTICAL 8: Determine the wavelength of light from a laser or other light source using a diffraction grating.				
How diffraction experiments provide the evidence for wave nature of electrons				

You should be able to demonstrate and show your understanding of:	Progress and understanding:			
The use of the equation: $\lambda=\frac{1}{p}$				

