$6^{\text {th }}$ July

1. The equation relating to a pendulum undergoing simple harmonic motion is:

$$
T=2 \pi \sqrt{\frac{L}{g}}
$$

a. Rearrange the equation to make L / T^{2} the subject

An experiment was carried out by a student to determine the gravitational field strength using a simple pendulum. They adjusted the length of a pendulum and measured the time for ten complete oscillations.
b. Complete the table, with values for the time period for one oscillation and \mathbf{T}^{2}

Length / m	$\mathrm{t}_{10} / \mathrm{s}$	T / s	$\mathrm{T}^{2} / \mathrm{s}^{2}$
0.30	10.8	1.08	1.17
0.35	11.5	1.15	1.32
0.40	12.6	1.26	
0.45	13.2	1.32	
0.50	14.2		
0.55	14.4		
0.60	15.2		

c. Plot the data on the graph and calculate the gradient of the straight line

$6^{\text {th }}$ July

4									
- 0.60									
-0.50									
0.50									
ξ									
¢									
$\stackrel{\square}{ \pm}$									
0.40									
- 0.30								\rightarrow	
$+1.0$	1.2	1.4	1.6	1.8	2.0	2.2	2.4		
				$\mathrm{T}^{2} / \mathrm{s}^{2}$					

The gradient of the line is equal to L / T^{2}.
d. Use your calculated value for the gradient to determine an experimental value of ' g ' from this experiment

