
 

BAAO Astro Challenge 

November / December 2023 

Solutions and marking guidelines 

• The total mark for each question is in bold on the right-hand side of the table. The breakdown of the 

mark is below it.  

• There is an explanation for each correct answer for the multiple-choice questions. However, the 

students are only required to write the letter corresponding to the right answer.  

• In Section C, students should attempt either Qu 13 or Qu 14. If both are attempted, consider the 

question with the higher mark. 

• Answers to two or three significant figures are generally acceptable. The solution may give more than 

that, especially for intermediate stages, to make the calculation clear. 

• There are multiple ways to solve some of the questions; please accept all good solutions that arrive at 

the correct answer. Students getting the answer in a box  will get all the marks available for that 

calculation / part of the question (students may not explicitly calculate the intermediate stages, and 

should not be penalised for this so long as their argument is clear) 

Question Answer Mark 

Section A  10 

1. D 
The other places are other current UK spaceports (like Spaceport Cornwall 
in Newquay, which had its first launch Jan 2023) or ones proposed to open 
in 2024 (Sutherland Spaceport and Spaceport Snowdonia). The Shetland 
Islands are uniquely well placed for a spaceport as their high latitude 
means they can launch a greater payload for a given amount of fuel, whilst 
also being remote enough for safety should there be any issues at launch 

1 

2. D 
The period of an orbit is found with Kepler’s 3rd Law: 

𝑇 = √
4𝜋2

𝐺𝑀
𝑟3 ∴ 𝑇 ∝ 𝑟3/2 

The speed in a circular orbit is: 

𝑣 = √
𝐺𝑀

𝑟
∴ 𝑣 ∝ 𝑟−1/2 

To get the 𝑟 to cancel each other out in the product we need 𝑇𝑣3: 

𝑇𝑣3 = 2𝜋(𝐺𝑀)−1/2𝑟3/2 × (𝐺𝑀)3/2𝑟−3/2 = 2𝜋𝐺𝑀 = constant in system 
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3. A 
We first convert 21 million light years into metres, and then into parsecs 

21 Mly = 21 × 106 × ((3 × 108) × (365 × 24 × 60 × 60))

= 1.99 × 1023 m = 6.43 Mpc 
We can then use the standard formula to convert from apparent to 
absolute magnitude 

ℳ =𝓂− 5 log (
𝑑

10
) = 10.8 − 5 log(

6.43 × 106

10
) = −18.24 
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4. B 
The distance from the Sun to the Moon is effectively the same as the 
distance from the Sun to Earth, and so 

𝑏 =
𝐿

4𝜋𝑑2
=

𝐿⊙
4𝜋(1 au)2

=
3.83 × 1026

4𝜋(1.50 × 1011)2
= 1355 W m−2 

Assuming the panel is always perpendicular to the sunlight 

area =
𝑃

𝑏
=

50

1355
= 0.0369 m2 = 369 cm2 ≈ 370 cm2 

(This is only a lower limit as the real panel is not 100% efficient and the 
movement of the rover means it does not always face directly at the Sun) 
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5. C 
The radius of a geostationary orbit is 

𝑟𝑔𝑒𝑜 = √
𝐺𝑀⊕
4𝜋2

𝑇2
3

= √
6.67 × 10−11 × 5.97 × 1024

4𝜋2
× (24 × 60 × 60)2

3

= 4.22 × 107 m 
Considering the geometry of the situation, where 𝜑 is the maximum 
latitude that the geostationary satellite can be seen from (people there 
see it at their horizon since the satellites are in the plane of the equator) 

 

𝜑 = cos−1 (
𝑅⊕
𝑟𝑔𝑒𝑜

) = cos−1 (
6.37 × 106

4.22 × 107
) = 81.3° 

Hence, only Alert in Canada is at a high enough latitude to have 
geostationary satellites below their horizon 
[Note: other geosynchronous satellites could be seen if they were on an 
orbit inclined to the equator] 
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6. D 
It is the Pleiades star cluster in Taurus, with the Messier number M45 (the 
Orion nebula is M42, next to it is M43 [De Mairan's Nebula], whilst M44 is 
the Beehive cluster in Cancer) 
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7. A 
Aldebaran is the eye of the bull in Taurus 
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8. D 
The nearest (comparable size) galaxy to the Milky Way is the Andromeda 
Galaxy, and so the constellation needed was Andromeda (the others are 
Orion, Perseus and Gemini) 
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9. B 

 
Given the Moon is in the third quarter it is 90° behind where the Sun is, so 
the Sun must be a quarter of a year (= 3 constellations) further on in the 
zodiac. Remembering the order: 

Capricornus → Aquarius → Pisces → Aries 
Having worked out that the Sun must be in Aries, we need to remember 
which month that corresponds to: 

 
Hence, if the Sun is in Aries then it must be April 
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10. B 
The adjustment in time between the two locations is determined by the 
change in longitude 
Δ𝜆

360°
=
Δ𝑡

24ℎ
∴ Δ𝑡 =

47.51 + 2.59

360
× 24 = 3.34 hours = 3 h 20 mins 

Since Antananarivo is further East of Guernsey then it will be ahead 
 
The date is 21st June, which is the June solstice, so will be the longest day 
in Guernsey (northern hemisphere) and the shortest in Antananarivo 
(southern hemisphere), but their culminations will only be different by Δ𝑡. 
Since it is close to the Greenwich Meridian, culmination time in Guernsey 
will be approximately 12:00 UT, so culmination time in Antananarivo will 
be 12:00 – 3h20 = 08:40 UT 
 
The sunset time in Guernsey is 21:00 BST = 20:00 UT (since BST = UTC+1), 
so about 8 hours after culmination. If Antananarivo was on the equator 
sunset would be about 6 hours after culmination (so 08:40 + 6 = 14:40), 
and if it was at the same latitude as Guernsey but South (i.e. 49.45° S) 
then it would be 4 hours after culmination (by symmetry since it’s a 
solstice [6+2 in summer, 6-2 in winter]) and so 08:40 + 4 = 12:40 
 
Since the real latitude of Antananarivo (18.88° S) is between these two 
cases, it must be earlier than 14:40 but not as early as 12:40, leaving just 
14:20 as the only possible answer 
 
[Antananarivo is close enough to the equator that its day length doesn’t 
vary much – even though this is its winter solstice it still has about 11 
hours of daylight, unlike the 8 hours of daylight in Guernsey on its winter 
solstice] 
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Section B  10 

11. a) 
 
The final speed is 1/5th escape velocity 

𝑣𝑓𝑖𝑛𝑎𝑙 =
1

5
𝑣𝑒𝑠𝑐 =

1

5
√
2𝐺𝑀⊕
𝑅⊕

=
1

5
× √

2 × 6.67 × 10−11 × 5.97 × 1024

6.37 × 106

= 2240 m s−1 
 
The centripetal acceleration is 

𝑎 =
𝑣𝑓𝑖𝑛𝑎𝑙
2

𝑟
=
22362

45
= 1.11 × 105 m s−2 

 
Since 𝑔 = 9.81 m s−2 

∴ 𝑎 = 1.13 × 104 𝑔  

 
[Since the question was a ‘show that’, the final answer must be given to at 
least 2 s.f. to get the final mark] 
 
This is a really high acceleration for the onboard electronics of any 
satellite to have to cope with and means some fragile structures like large 
solar panel arrays will need to be stored carefully. 

[3] 
 
 
 
 
 

1 
 
 

 
1 
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 b) 
 
Period of motion (by considering distance travelled in a circle) 

𝑇 =
2𝜋𝑟

𝑣𝑓𝑖𝑛𝑎𝑙
=
2𝜋 × 45

2236
= 0.126 s 

Hence, the rotational frequency will be 

𝑓 =
1

𝑇
=

1

0.126
= 7.91 revolutions s−1  

  
[Accept s-1 or Hz for the unit] 
 

[2] 
 
 

1 
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12. a) 
 
Difference between 12 lunar months and a year 

365 − (12 × 29.53) = 10.64 days 
 
Average time between 365-day periods that contain 13 full moons 

29.53

10.64
= 2.78 years 

 
Since only 25% of blue moons will be supermoons the average time to 
wait is 

2.78 × 4 = 11.1 years  

 
[There are quite a wide variety of ways to approach this question – please 
credit any sensible approaches that get between ∼ 9− ∼ 11 years. The 
final mark can be awarded as an ecf for showing they understand how to 
use the 25% probability of a full moon being a supermoon. The first two 
marks can be awarded for an approach that shows the probability of a 
blue moon is ∼ 3% 

e.g. average month length = 
365

12
= 30.42 days, so probability of a blue 

moon is 
30.42−29.53

30.42
= 0.029 ≈ 3% ] 

 
The actual time between super blue moons is quite irregular, sometimes 
as long as 20 years. The next real super blue moons will be in a pair – 
January and March 2037. 
 

[3] 
 
 

1 
 
 

1 
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 b) 
 
The percentage change in angular diameter must be the same as the 
percentage change between the perigee and apogee, so 

𝑟𝑎 = 1.141𝑟𝑝 

∴ 𝑎(1 + 𝑒) = 1.141𝑎(1 − 𝑒) 
∴ 1 + 𝑒 = 1.141 − 1.141𝑒 

∴ 𝑒 =
0.141

2.141
= 0.0659  

 
[The first mark is for applying the data to the expressions for apogee and 
perigee and cancelling the Moon’s semi-major axis, whilst the second 
mark is for a value of the eccentricity] 
 

[2] 
 
 
 
 

1 
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This eccentricity is a little larger than the normal quoted value of 0.0549 
as that is a mean value – the Moon’s eccentricity varies over time (mainly 
due to solar perturbations), and so does its perigee and apogee distance 
 
 
 
 
 
 
 
 
 

Section C  10 

13. a) 
 
Converting the emitted wavelength 150 nm to an observed wavelength 
𝜆𝑜𝑏𝑠 = 𝜆𝑒𝑚𝑖𝑡(1 + 𝑧) = 150(1 + 10.6034) = 1740 nm (= 1.74 μm) 

 
[This mark can be awarded for correct conversion of 140 nm or 160 nm 
instead] 
 
Reading off the graph at 𝜆𝑜𝑏𝑠 = 1.74 μm 

𝐹𝜆 = 1.3 × 10
−20 erg s−1 cm−2 Å−1 

 
[Allow any value in the range 1.2 - 1.4 × 10-20 erg s-1 cm-2 Å-1] 
 
Calculating the spectral flux density in Jy 

𝐹𝜈 = 3.34 × 10
6𝜆2𝐹𝜆 = 3.34 × 10

6 × 17402 × 1.3 × 10−20

= 1.32 × 10−7 Jy 
 
Converting this into an apparent magnitude 

𝓂 = −2.5 log (
𝐹𝜈
3631

) = −2.5 log (
1.32 × 10−7

3631
) = 26.1 

 
Finally, the absolute magnitude is then 

ℳ =𝓂− 5 log (
𝑑𝐿
10
) + 2.5 log(1 + 𝑧)

= 26.1 − 5 log(
113150 × 106

10
) + 2.5 log(1 + 10.6034)

= −21.5  
 
[Since it was a ‘show that’ question, final answer must have at least 3 s.f.] 
Allowed range of values 
𝐹𝜆 = 1.2 × 10

−20 → 𝐹𝜈 = 1.21 × 10
−7 Jy → 𝓂 = 26.2 → ℳ = −21.4 

𝐹𝜆 = 1.4 × 10
−20 → 𝐹𝜈 = 1.42 × 10

−7 Jy → 𝓂 = 26.0 → ℳ = −21.6 
 
This is really quite bright considering the galaxy must be young as it’s in 
the early Universe – the Milky Way by comparison has an absolute 
magnitude of about -21. 
 
 

[5] 
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1 
 
 
 
 
 

1 
 
 
 

1 
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 b) 
 
At a distance of d = 10 pc 

𝓂𝐴 −𝓂𝐵 =ℳ𝐴 −ℳ𝐵 = −2.5 log (
𝑏1
𝑏0
)

= −2.5 log(

𝐿1
4𝜋𝑑2

𝐿0
4𝜋𝑑2

) = −2.5 log (
𝐿1
𝐿0
) 

∴ ℳ −ℳ⊙ = −2.5 log (
𝐿

𝐿⊙
) 

∴ 𝐿 = 10
(
ℳ−ℳ⊙
−2.5

)
𝐿⊙ = 10

−21.5−4.74
−2.5 𝐿⊙ = 3.15 × 10

10 𝐿⊙
= 1.20 × 1037 W 

 
We can get the number of ionising photons emitted each second by 
dividing this power by the energy of each photon (in the emitted frame) 

𝑁𝑖𝑜𝑛 =
𝐿

𝐸𝑝ℎ𝑜𝑡
=
𝐿

ℎ𝑐
𝜆

=
1.20 × 1037

6.63 × 10−34 × 3.00 × 108

150 × 10−9

= 9.09 × 1054 photons s−1 
 
Hence the star formation rate is 

𝑆𝐹𝑅 = 1.08 × 10−53𝑁𝑖𝑜𝑛 = 1.08 × 10
−53 × 9.09 × 1054

= 98.1 𝑀⊙ year
−1  

 
[First mark is for an algebraic relationship between absolute magnitude 
and luminosity, whilst second mark is for using it to get the luminosity. If 
third mark is not awarded then it can be given for a correct calculation of 
the photon energy for λemit = 150 nm i.e. ℎ𝑐/𝜆𝑒𝑚𝑖𝑡 = 1.33 × 10

−18 J ] 
Allowed range of values / ecf assistance 

ℳ = −21.4 → 𝑆𝐹𝑅 = 90.6 𝑀⊙ year
−1 

ℳ = −21.6 → 𝑆𝐹𝑅 = 105.7 𝑀⊙ year
−1 

ℳ = −21 → 𝑆𝐹𝑅 = 61.7 𝑀⊙ year
−1 

 
This is actually a really high SFR, mostly due to our many simplifying 
assumptions. To do it properly you would need to take into account the 
underlying assumption of how many stars are made of each mass (known 
as the initial mass function). When Bunker et al. (2023) did this they 
calculated an SFR a factor of 3 smaller, which is less extreme but still high 
and shows plenty of star formation is taking place. 
 

[4] 
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 c) 
 
Assuming a constant SFR 

𝑡 =
𝑀

𝑆𝐹𝑅
=
109

98.1
= 1.02 × 107 years  

[Allow ecf with their SFR from part b)] 
 
This is 10.2 million years so is well within the 430 million years age of the 
Universe, but further emphasises how rapidly this galaxy has formed. 
[no mark for comment] 

[1] 
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14. a) 
 
Calculating the period of the 6:1 MMR 

𝑇6:1 =
1

6
× 12.4311 days = 49.7 hours 

 
We can use Kepler’s 3rd Law to calculate the period of the 1:3 SOR since 
within a system 𝑇2 ∝ 𝑎3 

𝑇1:3
2

𝑇6:1
2 =

𝑎1:3
3

𝑎6:1
3 ∴ 𝑇1:3 = 𝑇6:1 × (

𝑎1:3
𝑎6:1

)
3/2

= 49.7 × (
4200

4020
)
3/2

= 53.1 hours 

 
From this we can work out the rotational period 

𝑇𝑟𝑜𝑡 =
1

3
𝑇1:3 =

1

3
× 53.1 = 17.7 hours  

  

[3] 
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1 

 b) 
 
Using Kepler’s 3rd Law again with either the 6:1 MMR or the 1:3 SOR (here 
we use the former, but the latter is equally valid) 

𝑇𝑄2𝑅 = 𝑇6:1 × (
𝑎𝑄2𝑅

𝑎6:1
)
3/2

= 49.7 × (
2520

4020
)
3/2

= 24.7 hours 

 
The number of complete cycles is inversely proportional to the period, and 
the particles in Q2R will complete fewer cycles than Quaoar will complete 
rotations, so 

𝑎

𝑏
=
1/𝑇𝑄2𝑅
1/𝑇𝑟𝑜𝑡

=
𝑇𝑟𝑜𝑡
𝑇𝑄2𝑅

=
17.7

29.7
= 0.717 

∴ 𝑎: 𝑏 = 5: 7  
 
[An answer of a : b = 3 : 4 scores 0.5 marks for the final marking point] 
 

[3] 
 
 
 
 

1 
 
 
 
 
 

1 
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 c) 
 
Using Kepler’s 3rd Law with any of the three orbits calculated so far (here 
we will use the 6:1 MMR) 

𝑀𝑄 =
4𝜋2

𝐺

𝑎3

𝑇2
=

4𝜋2

6.67 × 10−11
×

(4020 × 103)3

(49.7 × 60 × 60)2
= 1.20 × 1021 kg 

 
[This mark may be awarded for earlier working if they calculated the mass 
in part b)] 
 

Given that 𝛼 = (
4𝜋

𝛾
)
1/3

 and 𝜌𝑄 =
𝑀𝑄
4

3
𝜋𝑅𝑄

 then putting it into the given 

equation for the Roche limit 

𝑑 = (
4𝜋

𝛾
)
1/3

× 𝑅𝑄

(

  
 

𝑀𝑄
4
3𝜋𝑅𝑄

𝜌𝑟𝑖𝑛𝑔

)

  
 

1/3

= (
3𝑀𝑄
𝛾𝜌𝑟𝑖𝑛𝑔

)

1/3

 

[4] 
 
 
 
 

1 
 
 
 
 
 
 
 
 
 

1 
 
 
 
 



∴ 𝑑 = (
3 × 1.20 × 1021

1.6 × 400
)

1/3

= 1780 km  

 
So 𝑑 < 𝑎𝑄2𝑅 < 𝑎𝑄1𝑅 as expected 

 
[The second mark is for developing an expression for the Roche limit that 
is independent of the radius of Quaoar – allow one kept in terms of α 
rather than converting to γ. The fourth mark requires some sort of 
numerical or mathematical comparison to justify the verification] 
 
Quaoar is one of only three minor bodies to have ring systems – the other 
two are Haumea (a dwarf planet) and Chariklo (a Centaur – an asteroid 
that orbits between Saturn and Uranus). Interestingly, the 1:3 SOR 
coincides with their rings too, so it might be that this particular resonance 
is particularly important in forming rings around small bodies. 
 
A map of the whole system is shown below: 

 
1 
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