Please note: these solutions are not endorsed by Isaac Physics!
If you want to improve your understanding of the underlying physics then you have to work through the questions in the Linking Concepts book from Isaac Physics. There are answers in the back of the book for Question 1 and you can check your other answers by entering them at isaacphysics.org. This is just an example of how to work through a chapter.

Objects rising and falling exchange stores of gravitational potential and kinetic energy.
Example context: We can calculate the speed of objects after they have fallen. We can also work out the height to which a projected object rises. The analysis is particularly useful when balls bounce.

Quantities:	h_{0}	starting height (m)	v_{0}	starting speed $\left(\mathrm{m} \mathrm{s}^{-1}\right)$
	h_{1}	final height (m)	v_{1}	final speed $\left(\mathrm{m} \mathrm{s}^{-1}\right)$
	m	mass (kg)	g	gravitational field strength $\left(\mathrm{N} \mathrm{kg}^{-1}\right)$
	E_{K}	kinetic energy (J)	$E_{G P}$	gravitational potential energy (J)
	η	efficiency (no unit)	E_{T}	total energy (J)

Equations: $\quad E_{K}=1 / 2 m v^{2} \quad E_{G P}=m g h \quad E_{T}=E_{K}+E_{G P} \quad E_{T, \text { after }}=\eta E_{T, \text { before }}$
1.1 In the absence of air resistance, use the above equations to derive expressions for:
a. the speed v_{1} at the ground if an object was dropped from h_{0}.

$$
y g h_{0}=\frac{1}{2} y v_{1}^{2} \quad g h_{0}=\frac{v_{1}^{2}}{2} \quad v_{1}=\sqrt{2 g h_{0}}
$$

b. the speed v_{1} at a height h_{1} if an object had speed v_{0} at h_{0}.

$$
\begin{aligned}
& \mu g h_{0}+\frac{1}{2} \mu v_{0}^{2}=\mu g h_{1}+\frac{1}{2} v v_{1}^{2} \\
& 2 g h_{0}+v_{0}^{2}=2 g h_{1}+v_{1}^{2} \\
& v_{1}^{2}=v_{0}^{2}+2 g h_{0}-2 g h_{1} \quad v_{1}=\sqrt{v_{0}^{2}+2 g\left(h_{0}-h_{1}\right)}
\end{aligned}
$$

c. the greatest height h_{1} for an object projected up from the ground with speed v_{0}.

$$
\frac{1}{2} \mu v_{0}^{2}=\mu g h_{1} \quad \frac{v_{0}^{2}}{2}=g h_{1} \quad h_{1}=\frac{v_{0}^{2}}{2 g}
$$

d. the greatest height h_{1} for an object projected up from a height h_{0} with speed v_{0}.

$$
\begin{aligned}
& \mu g h_{0}+\frac{1}{2} \psi v_{0}^{2}=\nu g h_{1} \\
& g h_{1}=g h_{0}+\frac{v_{0}^{2}}{2} \quad h_{1}=h_{0}+\frac{v_{0}^{2}}{2 g}
\end{aligned}
$$

e. the greatest height h_{1} above a hard surface reached by an object dropped from a height h_{0} if the efficiency of the bounce is η.

$$
\begin{aligned}
& \eta \mu \xi_{0}=\mu_{g} h_{n} \\
& \eta h_{0}=h_{1} \\
& h_{1}=\eta_{0}
\end{aligned}
$$

f. the speed v_{1} just after a bounce from a hard surface if the speed just before was v_{0} (if the efficiency of the bounce is η).

$$
\begin{aligned}
1 / y y v_{0}^{2} & =\frac{1}{2} y v_{1}^{2} \\
\eta v_{0}^{2} & =v_{1}^{2} \\
v_{1} & =\sqrt{\eta} \cdot v_{0}
\end{aligned}
$$

1.2 An 800 kg pumpkin falls from 3.4 m . Calculate its speed just before striking the ground.

Frow 1.1 a

$$
\begin{aligned}
& v_{1}=\sqrt{2 g h_{0}} \\
& v_{1}=\sqrt{2 \times 9.81 \times 3.4} \\
& v_{1}=8.167 \\
& v_{1}=8.2 \mathrm{~ms}^{-1}
\end{aligned}
$$

1.3 A 60 g tennis ball is hit upwards at $27 \mathrm{~m} \mathrm{~s}^{-1}$. How high will it rise?

Frown $1.1 c$

$$
h_{1}=\frac{v_{0}^{2}}{2 g}=\frac{27^{2}}{2 \times 9.81}=37.16=37 \mathrm{~m}
$$

1.4 A 60 g tennis ball is hit upwards at $27 \mathrm{~m} \mathrm{~s}^{-1}$ from a 25 m rooftop. How fast will it be travelling when it passes the rooftop on the way down?

Frow 1.16

$$
\begin{aligned}
v_{1}=\sqrt{v_{0}^{2}+2 g\left(l_{0}-h_{1}\right)} & =\sqrt{27^{2}+(2 \times 9.81 \times(25-25))} \\
v_{1} & =\sqrt{27^{2}+0} \\
v_{1} & =27 \mathrm{~ms}^{-1}
\end{aligned}
$$

1.5 A 3.1 kg brick falls from scaffolding on a building site. A worker 3.5 m above the ground sees it fall past at $6.5 \mathrm{~m} \mathrm{~s}^{-1}$. What is its kinetic energy just before striking the ground?

$$
\begin{aligned}
& E_{\text {Kivere }}=E_{\text {Kubue }}+E_{\text {cipbofore }} \\
& E_{k \text { yer }}=\frac{1}{2} m v_{0}^{2}+m g h_{0} \\
& E_{k \text { 泡 }}=\left(\frac{1}{2} \times 3.1 \times 6.5^{2}\right)+(3.1 \times 9.81 \times 3.5) \\
& E_{k y t a r}=171.126=170 \mathrm{~J}(2 \mathrm{~g})
\end{aligned}
$$

1.6 At what speed will a 4.2 kg lump of clay hit a potter's wheel if it is thrown downwards at $1.1 \mathrm{~m} \mathrm{~s}^{-1}$ from a height 40 cm above the wheel?

From 1.1 b

$$
\begin{aligned}
v_{1}=\sqrt{v_{0}^{2}+2 g\left(h_{0}-h_{1}\right)} & =\sqrt{1.1^{2}+(2 \times 9.81 \times(0.40))} \\
v_{1} & =3.010=3.0 \mathrm{~ms}^{-1}
\end{aligned}
$$

1.7 A worker at ground level throws a 2.2 kg drinks bottle upwards to a thirsty colleague 3.2 m above the ground. It just reaches him, but he fails to catch it, and it falls into an excavated trench 1.6 m below ground level.
a. At what speed did the worker need to throw the bottle if she threw it from the waist, 1.0 m above the ground?

$$
\begin{array}{ll}
h_{1} \uparrow 3.2 h_{0}+\frac{1}{2} \psi v_{0}^{2}=k g h_{1} \\
h_{0}{ }_{10} \uparrow \\
v_{0}=\sqrt{2 g\left(h_{1}-h_{0}\right)} \\
v_{0}=\sqrt{2 \times 9.81 \times(3.2-1.0)}=6.570=6.6 \mathrm{~ms}^{-1}
\end{array}
$$

b. How fast was it moving when it struck the base of the trench?

$$
\begin{aligned}
& m g h_{1}=m g h_{2}+\frac{1}{2} m v_{2}^{2} \\
& v_{2}=\sqrt{2 g\left(h_{1}-h_{2}\right)} \\
& v_{2}=\sqrt{2 \times 9.81 \times(3.2-(-) 1.6)} \\
& v_{2}=9.704=9.7 m s^{-1}
\end{aligned}
$$

1.8 A 5.2 g ball is dropped from 90 cm onto a surface and bounces to a maximum height of 41 cm . Calculate the efficiency, η.

Frow i le

$$
h_{1}=\eta h_{0} \quad \eta=\frac{h_{1}}{h_{0}}=\frac{41}{90}=0.4556=0.46
$$

1.9 How fast would the ball, in question 1.8 above, rebound if it struck the surface at $2.5 \mathrm{~m} \mathrm{~s}^{-1}$?

$$
\begin{aligned}
& \text { From } 1.1 \mathrm{f} \\
& v_{1}=\sqrt{\eta} \cdot v_{0}=\sqrt{0.4556} \times 2.5=1.687=1.7 \mathrm{~ms}^{-1}
\end{aligned}
$$

1.10 How high would a ball bounce if it struck an $\eta=0.75$ surface at $13 \mathrm{~m} \mathrm{~s}^{-1}$?

$$
\begin{aligned}
& \eta \frac{1}{2} \psi v_{0}^{2}=\psi g_{g} h_{1} \\
& h_{1}=\frac{\eta v_{0}^{2}}{2 g}=\frac{0.75 \times 13^{2}}{2 \times 9.81}=6.460=6.5 \mathrm{~m}
\end{aligned}
$$

