Please note: these solutions are not endorsed by Isaac Physics!

If you want to improve your understanding of the underlying physics then **you** have to work through the questions in the Linking Concepts book from Isaac Physics. There are answers in the back of the book for Question 1 and you can check your other answers by entering them at **isaacphysics.org**. This is just an example of how to work through a chapter.

Objects rising and falling exchange stores of gravitational potential and kinetic energy.

Example context: We can calculate the speed of objects after they have fallen. We can also work out the height to which a projected object rises. The analysis is particularly useful when balls bounce.

Quantities:	h ₀ h ₁ m E _K n	final heig mass (kg kinetic ei)	$egin{array}{c} {\sf V}_0 \ {\sf V}_1 \ {\sf G} \ {\sf E}_{GP} \ {\sf E}_{{\sf T}} \end{array}$	final sp gravita gravita	g speed (m s ⁻¹) eed (m s ⁻¹) tional field strength (N kg ⁻¹) tional potential energy (J) nergy (J)
Equations:	$E_K = \frac{1}{2}$	m v²	$E_{GP} = m g h$	$E_T = E_K$	+ E _{GP}	$E_{T,after} = \eta E_{T,before}$

- 1.1 In the absence of air resistance, use the above equations to derive expressions for:
 - a. the speed v_1 at the ground if an object was dropped from h_0 .

$$Mgho=\frac{1}{2}MV_1^2$$
 $gho=\frac{V_1^2}{2}$ $V_1=\sqrt{2gho}$

b. the speed v_1 at a height h_1 if an object had speed v_0 at h_0 .

Mgho +
$$\frac{1}{2}$$
MV₁² = Mgh₁ + $\frac{1}{2}$ MV₁²
2gho + V₀² = 2gh₁ + V₁²
 $V_1^2 = V_0^2 + 2gh_0 - 2gh_1$ $V_1 = \sqrt{V_0^2 + 2g(h_0 - h_1)}$

c. the greatest height h_1 for an object projected up from the ground with speed v_0 .

$$\frac{1}{2}\mu V_0^2 = \mu g h, \quad \frac{V_0^2}{2} = g h, \quad h_1 = \frac{V_0^2}{2g}$$

d. the greatest height h_1 for an object projected up from a height h_0 with speed v_0 .

$$Mgh_0 + \frac{1}{2}MV_0^2 = Mgh_1$$

 $gh_1 = gh_0 + \frac{V_0^2}{2}$
 $h_1 = h_0 + \frac{V_0^2}{2g}$

e. the greatest height h_1 above a hard surface reached by an object dropped from a height h_0 if the efficiency of the bounce is η .

f. the speed v_1 just after a bounce from a hard surface if the speed just before was v_0 (if the efficiency of the bounce is η).

1.2 An 800 kg pumpkin falls from 3.4 m. Calculate its speed just before striking the ground.

From 1.1a
$$V_1 = \sqrt{2gh_0}$$

 $V_1 = \sqrt{2} \times 9.81 \times 3.4$
 $V_1 = 8.167$
 $V_1 = 8.2 \text{ ms}^{-1}$

1.3 A 60 g tennis ball is hit upwards at 27 m s⁻¹. How high will it rise?

From 1.1 c
$$h_1 = \frac{V_0^2}{2g} = \frac{27^2}{2 \times 9.81} = 37.16 = 37 \text{ m}$$

1.4 A 60 g tennis ball is hit upwards at 27 m s⁻¹ from a 25 m rooftop. How fast will it be travelling when it passes the rooftop on the way down?

From 1.16
$$V_{1} = \sqrt{v_{0}^{2} + 2g(h_{0} - h_{1})} = \sqrt{27^{2} + (2 \times 9.81 \times (25 - 25))}$$

$$V_{1} = \sqrt{27^{2} + 0}$$

$$V_{1} = 27 \text{ m/s}^{-1}$$

1.5 A 3.1 kg brick falls from scaffolding on a building site. A worker 3.5 m above the ground sees it fall past at 6.5 m s⁻¹. What is its kinetic energy just before striking the ground?

$$E_{kajker} = E_{kbajore} + E_{kPbajore}$$

$$E_{kajker} = \frac{1}{2} m v_o^2 + mg h_o$$

$$E_{kajker} = (\frac{1}{2} \times 3.1 \times 6.5^2) + (3.1 \times 9.81 \times 3.5)$$

$$E_{kajker} = 171.926 \approx 170 \text{ T} (2 \text{ s})$$

1.6 At what speed will a 4.2 kg lump of clay hit a potter's wheel if it is thrown downwards at 1.1 m s⁻¹ from a height 40 cm above the wheel?

$$V_1 = \sqrt{V_0^2 + 2g(h_0 - h_1)} = \sqrt{1 \cdot 1^2 + (2 \times 9.81 \times (0.40))}$$

 $V_1 = 3.010 = 3.0 \text{ m/s}^{-1}$

- 1.7 A worker at ground level throws a 2.2 kg drinks bottle upwards to a thirsty colleague 3.2 m above the ground. It just reaches him, but he fails to catch it, and it falls into an excavated trench 1.6 m below ground level.
 - a. At what speed did the worker need to throw the bottle if she threw it from the waist, 1.0 m above the ground?

b. How fast was it moving when it struck the base of the trench?

$$W_{1} = W_{2} h_{1} + \frac{1}{2} w_{2}^{2}$$

$$V_{2} = \sqrt{2g (h_{1} - h_{2})}$$

$$V_{3} = \sqrt{2 \times 9.81 \times (3.2 - (-)1.6)}$$

$$V_{4} = 9.709 = 9.7 \text{ ms}^{-1}$$

1.8 A 5.2 g ball is dropped from 90 cm onto a surface and bounces to a maximum height of 41 cm. Calculate the efficiency, η .

From I.le

$$h_1 = \eta h_0$$
 $\eta = \frac{h_1}{h_0} = \frac{41}{90} = 0.4556 = 0.46$

1.9 How fast would the ball, in question 1.8 above, rebound if it struck the surface at 2.5 m s⁻¹?

From 1.1 f

$$V_1 = \sqrt{\eta} \cdot V_0 = \sqrt{0.4556} \times 2.5 = 1.687 = 1.7 \text{ ms}^{-1}$$

1.10 How high would a ball bounce if it struck an η = 0.75 surface at 13 m s⁻¹?

$$h_1 = \frac{\eta V_0^2}{2g} = \frac{0.75 \times 13^2}{2 \times 9.81} = 6.460 = 6.5 \text{ m}$$