$1^{\text {st }}$ August

1. Calculate the area, in m^{2}, of a circle with a radius of:
a. 2.0 m
$A=\pi r^{2}$
$=$
$13 \mathrm{~m}^{2}$
b. 4.0 m
$"=50 \mathrm{~m}^{2}$
C. 4.0 cm
11
$=J \times\left(4.0 \times 10^{-2}\right)^{2}=5.0 \times 10^{-3} \mathrm{~m}^{2}$
d. 4.0 mm
11

$$
=J_{x}\left(4.0 \times 10^{-3}\right)^{2}=5.0 \times 10^{-5} \mathrm{~m}^{2}
$$

2. Complete the tip-to-tail vector diagram by drawing in the resultant vector, working out its magnitude and measuring the angle from the vertical.

3. Write down the seven base units that all other derived units can be expressed in.

- kg kilogram	
- metre	
-	s second
- A	ampere
- K	kelvin
- mol mole	
- cd coudela	

$2^{\text {nd }}$ August

1. Calculate the area, in m^{2}, of a circle with:
a. Radius 5.0 mm

$$
\begin{aligned}
& \text { 2, of a circle with: } \\
& A=\pi r^{2}=7.9 \times 10^{-5} \mathrm{~m}^{2} \\
& A=\frac{J J d^{2}}{4}=2.0 \times 10^{-5} \mathrm{~m}^{2} \\
&=7.9 \times 10^{-5} \mathrm{~m}^{2}
\end{aligned}
$$

b. Diameter 5.0 mm
d. Circumference 10.0 mm

$$
c=\pi d \quad \therefore A=\frac{c^{2}}{4 \pi}=8.0 \times 10^{-6} \mathrm{~m}^{2}
$$

2. Find out what the following symbols in A Level Physics represent:
a. G Gravitational constant
b. ε_{0} Permittivity of tree space
c. pc Parsee
d. n Planck's constant
e. Av Elatroustt
f. m_{e} Mess of an electron
3. Show that the base units for joules are $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$.

$$
\begin{aligned}
& E_{k}=\frac{1}{2} / \\
& I=v^{2} \\
& J=\left(m s^{-1}\right)^{2} \\
& J=k_{g} \times m^{2} s^{-2} \\
& J=k g m^{2} s^{-2}
\end{aligned}
$$

$3^{\text {rd }}$ August

1. Calculate the area, in m^{2}, of a triangle with a : $\quad A=\frac{1}{2} \times$ base x beiglet
a. Vertical height of 36 cm and a base of $11 \mathrm{~cm} \quad A=0.5 \times 11 \times 36=0.020 \mathrm{~m}^{2}$
b. Vertical height of 18 cm and a base of $36 \mathrm{~cm} \quad A=0.5 \times 36 \times 18=0.032 \mathrm{~m}^{2}$
c. Vertical height of 36.2 cm and a base of $1.13 \mathrm{~m} \mathbf{A}=0.5 \times 1.13 \times 0.362$ $A=0.020453 \approx 0.0205 \mathrm{~m}^{2}$
2. Complete the tip-to-tail vector diagram by drawing in the resultant vector, working out its magnitude and measuring the angle from the vertical.

3. Calculate the horizontal and vertical components of a 10.1 N force acting at 17.2° above the horizontal.

$$
F_{\mathrm{H}}=10.1 \cos 17.2=9.65 \mathrm{~N}
$$

$4^{\text {th }}$ August

1. Calculate the surface area, in m^{2}, of a sphere with a radius of:
a. 0.80 m
$A=4 \pi r^{2}$
$=$
$8.0 m^{2}$
b. 0.40 m
$=2.0 m^{2}$
c. 0.20 m
18
$=0.50 \mathrm{~m}^{2}$
Notice a pattern?
d. 0.10 m
8
$=0.13 \mathrm{~m}^{2}$
2. Find out the values for the following constants used regularly throughout A Level Physics:
a. Mass of an electron
b. Planck's constant
c. Speed of light 9.11×10^{-31} $6.63 \times 10^{-34} \mathrm{Jg}$ $3.00 \times 10^{8} \mathrm{~ms}^{-1}$
d. Elementary charge $1.60 \times 10^{-19} \mathrm{C}$
e. Gravitational field strength on Earth's surface $\quad 9.81 \mathrm{~N} \mathrm{~kg}^{-1}$
f. Acceleration due to gravity on Earth
3. Calculate the direction of the resultant force when 9.81 N acts to the right and 3.24 N acts downwards.

$$
\theta=\tan ^{-1}\left(\frac{0}{A}\right)=\tan ^{-1}\left(\frac{3.24}{9.81}\right)=18.3^{\circ}
$$

$$
18.3^{\circ} \text { blow the horizatal }
$$

$5^{\text {th }}$ August

1. Calculate the volume, in m^{3}, of a sphere with a radius of:
a. $0.80 \mathrm{~m} \quad V=4 / 3 J r^{3}=2.1 \mathrm{~m}^{3}$
b. 0.40 m
c. 0.20 m
d. 0.10 m " \qquad
$=0.034 \mathrm{~m}^{3}$
Notice a patten?
\square
2. Write down the proportionality relationship between gravitational potential energy and mass (for a uniform field).

$$
\begin{aligned}
& E_{p}=m_{g} h \\
& E_{p} \propto m
\end{aligned}
$$

Ep or PE often used
3. Calculate the combined resistance of a 30Ω and 50Ω resistor connected in parallel.

$$
\begin{aligned}
& \frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
& \frac{1}{R_{T}}=\frac{1}{30}+\frac{1}{50} \\
& \frac{1}{R_{T}}=0.05333 \\
& R_{T}=18.75=19 \Omega
\end{aligned}
$$

1. Calculate the volume and surface area of a cylinder with a radius of 92 mm and a length of 2.7 m .

$$
\begin{aligned}
& r=T \\
& V=\pi r^{2} L=\pi \times\left(92 \times 10^{-3}\right)^{2} \times 2.7=0.072 \mathrm{~m}^{3} \\
& A=2 \times\left(\pi r^{2}\right)+2 \pi r L=1.6 \mathrm{~m}^{2}
\end{aligned}
$$

2. Trace the following curves.

3. A catapult launches a stone vertically at $25 \mathrm{~m} \mathrm{~s}^{-1}$. By equating kinetic energy and gravitational potential energy, calculate the maximum height reached.

Assume there are no energy losses and there is negligible air resistance.

$$
\begin{aligned}
E_{k} & =E_{p} \\
\frac{1}{2} y / v^{2} & =v / g \Delta h \\
\Delta h & =\frac{v^{2}}{2 g}=\frac{25^{2}}{2 \times 9.81}=32 \mathrm{~m}
\end{aligned}
$$

$7^{\text {th }}$ August

1. Calculate the volume, in m^{3}, and surface area, in m^{2}, of a sphere with a radius of:
a. 82 mm
b. 6.4 cm
c. 6400 km Ear
$A=4 \pi r^{2} \quad V=1.1 \times 10^{21} \mathrm{~m}^{3}$
$A=5.1 \times 10^{-2} \mathrm{~m}^{2}$
c. $6400 \mathrm{~km} \quad A=4 J \mathrm{r}^{2}$
$\begin{array}{ll}A=4 \pi r^{2} \quad & V=1.1 \times 10^{21} \mathrm{~m}^{3} \\ & V=1.41 \times 10^{27} \mathrm{~m}^{3}\end{array}$ $A=5.1 \times 10^{14} \mathrm{~m}^{2}$
d. $6.96 \times 10^{5} \mathrm{~km}$ $A=6.09 \times 10^{18} \mathrm{~m}^{2}$ Our Sun
2. Rearrange the following to make \mathbf{T} the subject:
a. $f=1 / T$
$T=1 / f$
b. $W=T \theta$
$T=W / \theta$
c. $\mathrm{pV}=\mathrm{nR} T$

$$
T=p V / u R
$$

d. $P=\sigma A T^{4}$

$$
T=\sqrt[4]{\frac{P}{\sigma A}}
$$

3. Calculate the speed of a wave that has a time period of 4.0 s and a wavelength of 40 m .

$$
\begin{aligned}
v=f^{\prime} \lambda \quad f & =\frac{1}{T} \\
V & =\frac{\lambda}{T} \\
V=\frac{40}{4.0} & =10 \mathrm{~ms}^{-1}
\end{aligned}
$$

$8^{\text {th }}$ August

1. Calculate the diameter, in m, of a wire with a cross-sectional area of:
a. $1.0 \mathrm{~m}^{2}$
b. $0.16 \mathrm{~m}^{2}$
c. $100 \mathrm{~mm}^{2}$
d. $1.7 \times 10^{-3} \mathrm{~m}^{2}$

$$
\left(1 \mathrm{man}^{2}=1 \times 10^{6} \mathrm{~m}^{2}\right)
$$

2. Rearrange the following to make $\boldsymbol{\omega}$ the subject:
a. $P=T \omega$
b. $v_{\max }=\omega a$
c. $F=m \omega^{2} r$

$$
\omega=\sqrt{\frac{F}{m r}}
$$

d. $E_{k}=1 / 2 \mid \omega^{2}$

$$
\omega=P / T
$$

$$
\omega=V_{\max } / a
$$

$$
\begin{array}{ll}
d=1.1 \mathrm{~m} & A=\frac{\pi d^{2}}{4} \\
d=0.45 \mathrm{~m} & \frac{4 A}{J}=d^{2} \\
d=0.011 \mathrm{~m} & d=\sqrt{\frac{4 A}{J}}
\end{array}
$$

$$
\omega=\sqrt{\frac{2 E_{k}}{I}}
$$

3. A radioactive sample has an initial activity of 2000 Bq .

Calculate the activity of the sample after 4 half-lives.

0	2000
1	1000
2	500
3	250
4	125

$9^{\text {th }}$ August

1. Calculate the volume, in m^{3}, of a cylinder with a :
a. Radius of 920 mm and a height of $2.7 \mathrm{~m} \quad V=\pi r^{2} h=7.2 \mathrm{~m}^{3}$
b. Length of 20 m and diameter 1.9 mm

$$
\begin{aligned}
& V=\frac{\pi d^{2} L}{4}=5.7 \times 10^{-5} \mathrm{~m}^{3} \\
& V=\pi r^{2} L=5.2 \times 10^{-6} \mathrm{~m}^{3}
\end{aligned}
$$

2. Rearrange the following to make \mathbf{V} the subject:
a. $\rho=m / v \quad V=m / \rho$
b. $R=V / l \quad V=I R$
c. $p V=N k T \quad V=N k T / p$
d. $P=V^{2} / R \quad V=\sqrt{P R}$
3. $0.050 \mathrm{~m}^{3}$ of a gas is at a pressure of 220 kPa . The volume is decreased to $0.010 \mathrm{~m}^{3}$.

Calculate the pressure of the gas after it has been compressed, provided the temperature has remained constant.

$$
\begin{aligned}
& p_{1} V_{1}=p_{2} V_{2} \\
& p_{2}=p_{1} \frac{V_{1}}{V_{2}}=220 \times \frac{0.050}{0.010}=1100 \mathrm{kPa}
\end{aligned}
$$

$10^{\text {th }}$ August

1. Calculate the gradient and hence the equation of the straight-line graph that goes through the points $(0,2)$ and $(5,7)$.

$$
m=\frac{\Delta y}{\Delta x}=\frac{7-2}{5-0}=1
$$

$$
\begin{gathered}
y-2=1(x-0) \\
y=x+2
\end{gathered}
$$

2. Rearrange the following to make \mathbf{v} the subject:
a. $P=F V$
b. $F=B Q v$
C. $F=m v^{2} / r$
d. $\Delta f / f=v / c$

$$
V=P / F
$$

$$
v=F / B Q
$$

$$
v=\sqrt{\frac{F_{r}}{m}}
$$

$$
v=\frac{\Delta f c}{f}
$$

3. The driving force of a motorbike's engine is 2000 N and the resistive force the bike experiences is 600 N . The bike and rider have a total weight of 2800 N .
Calculate the acceleration. Use $\mathrm{g}=9.81 \mathrm{~N} \mathrm{~kg}^{-1}$.

$11^{\text {th }}$ August
4. Calculate the gradient and hence the equation of the straight-line graph that goes through the points $(8,11)$ and $(-3,-22)$.

$$
m=\frac{\Delta y}{\Delta x}=\frac{-22-11}{-3-8}=\frac{-33}{-11}=3
$$

$$
\begin{gathered}
y-11=3(x-8) \\
y=3 x-13
\end{gathered}
$$

2. Rearrange the following to make \mathbf{r} the subject:
a. $T=F r$

$$
r=T / F
$$

b. $F=6 \pi \eta r v$

$$
r=F / 6 \pi \eta v
$$

c. $F=m \omega^{2} r \quad r=F / u \omega^{2}$
d. $a=v^{2} / r \quad r=v^{2} / a$
3. A mountain biker accelerates for 20 s from rest over a distance of 85 m . The cyclist and their bike have a mass of 110 kg .

Calculate the kinetic energy gained by the cyclist.

$$
\begin{array}{ll}
s=85 \mathrm{~m} & s=\left(\frac{u+v}{2}\right) t \\
u=0 \mathrm{~ms}^{-1} & v=\frac{2 \mathrm{~s}}{t}-u \mathrm{u} \\
v=? & v=\frac{2 \times 85}{20}=8.5 \mathrm{~ms}^{-1} \\
r & =20 \mathrm{~s} \\
\begin{aligned}
E_{k}=\frac{1}{2} m v^{2}= & \frac{1}{2} \times 110 \times 8.5^{2}
\end{aligned} & =3974 \\
& \approx 4000 \mathrm{~J}
\end{array}
$$

$12^{\text {th }}$ August

1. Calculate the equation of the straight-line graph that goes through the point $(9,3)$ and has a gradient of -2.

$$
\begin{gathered}
y-3=-2(x-9) \\
y=-2 x+18+3 \\
y=-2 x+21
\end{gathered}
$$

2. Describe, in a practical investigation, what is meant by:
a. An independent variable

This is what you decide to change.
b. A dependent variable

This is what changes.
c. A control variable

This is kept the same to ensure a fair test.
3. Red light has a wavelength of approximately 700 nm , whereas violet light has a wavelength of approximately 400 nm .

Calculate the range of frequencies of visible light.

$$
f=\frac{\epsilon}{\lambda}
$$

$$
\begin{aligned}
& f_{\text {red }}=\frac{3.00 \times 10^{8}}{700 \times 10^{-9}} \approx 4.3 \times 10^{14} \mathrm{~Hz} \\
& f_{\text {riot }}=\frac{3.00 \times 10^{8}}{400 \times 10^{-9}} \approx 7.5 \times 10^{14} \mathrm{~Hz}
\end{aligned}
$$

$13^{\text {th }}$ August

1. Calculate the area, in m^{2}, of a circle with a diameter of:
a. 0.800 mm

$$
A=5.03 \times 10^{-7} \mathrm{~m}^{2}
$$

b. 0.00142 m
$A=\frac{\pi d^{2}}{4}$
$A=1.58 \times 10^{-6} \mathrm{~m}^{2}$
c. $805 \mu \mathrm{~m}$ $A=5.09 \times 10^{-7} \mathrm{~m}^{2}$
d. 0.10 cm
$A=7.9 \times 10^{-7} \mathrm{~m}^{2}$
2. Identify the sinusoidal curves below and trace the lines.

3. Two resistors are connected in series. The circuit is set up with a 6.0 V battery and has a current of 0.30 A . The first resistor has a resistance of 12Ω.

Calculate the resistance of the second resistor and the potential difference across each of the two resistors.

$$
\begin{aligned}
& V=I R_{T} \quad R_{T}=\frac{V}{I}=\frac{6.0}{0.30}=20 \mathrm{l} \\
& R_{T}=R_{1}+R_{2} \quad 20=12+R_{2} \quad R_{2}=8.0 \mathrm{~d}
\end{aligned}
$$

R_{1}

$$
\begin{array}{ll}
R_{1} & V_{1}=I_{1} R_{1}=0.30 \times 12=3.6 \mathrm{~V} \\
R_{2} & V_{T}=V_{1}+V_{2} \quad V_{2}=6.0-3.6=2.4 \mathrm{~V}
\end{array}
$$

$14^{\text {th }}$ August

1. Sketch the sinusoidal curves with the same frequency and half the amplitude.

2. Sketch the sinusoidal curves with the same amplitude and twice the frequency.

3. The half-life of a sample is 3.0 hours and the number of nuclei in the sample is 6.4×10^{10}. Calculate the number of original nuclei left after 1 day.

$$
\begin{aligned}
& 1 \text { day }=\frac{24}{3.0}=8 \text { half-hives } \frac{1}{2}=\frac{1}{256} \\
& N=6.4 \times 10^{10} \times \frac{1}{256}=2.5 \times 10^{8} \text { unclei }
\end{aligned}
$$

$15^{\text {th }}$ August

1. Sketch the sinusoidal curves with four times the frequency and half the amplitude.

2. Find the value and units for the following constants:
a. Avogadro's constant
$6.02 \times 10^{23} \mathrm{~mol}^{-1}$
b. Molar gas constant $8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
c. Gravitational constant
$6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
d. Elementary charge
3. The pressure of $22.4 \mathrm{~cm}^{3}$ of a gas at $130^{\circ} \mathrm{C}$ is 400 kPa . The pressure is gradually increased to 550 kPa .

Calculate the volume, in m^{3}, of the gas after it has been compressed, provided the temperature remains constant.

$$
\begin{aligned}
p_{1} V_{1}=p_{2} V_{2} \quad V_{2} & =\frac{p_{1}}{p_{2}} V_{1}=\frac{400}{550} \times 22.4 \\
V_{2} & =16.3 \mathrm{~cm}^{3} \\
1 \mathrm{~cm}^{3} & =1 \times 10^{-6} \mathrm{~m}^{3} \\
V_{2} & =1.63 \times 10^{-5} \mathrm{~m}^{3}
\end{aligned}
$$

1. Use one of the following symbols; $<, \ll,>$ or \gg, to describe the relationship between:
a. 10 and 9
b. $\quad 100$ and 9
C. 3.7 and 4.1
d. 660×10^{9} and $6.5 \times 10^{-7} \quad 660 \times 10^{-9}>6.5 \times 10^{-7}$

$$
\left(6.6 \times 10^{-7}\right)
$$

2. Rearrange the following to make $\boldsymbol{\omega}_{1}$ the subject:
a. $\omega_{2}=\omega_{1}+a t$

$$
\begin{aligned}
& \omega_{1}=\omega_{2}-\alpha t \\
& \omega_{1}=\sqrt{\omega_{2}^{2}-2 \alpha \theta}
\end{aligned}
$$

$$
\omega_{1}=\sqrt{\frac{\theta}{t}-\frac{1}{2} \alpha t}
$$

d. $\theta=1 / 2\left(\omega_{1}+\omega_{2}\right) t$

$$
\omega_{1}=\frac{2 \theta}{t}-\omega_{2}
$$

3. Use the expression for force, $F=k e$, and the area under a force-extension graph to derive an expression for elastic potential energy in terms of spring constant and extension.

$$
E_{e}=A_{r a}=\frac{1}{2} F_{e} \quad F=k e
$$

$$
E_{e}=\frac{1}{2} \text { he e }
$$

$$
E=\frac{1}{2} k e^{2}
$$

17 ${ }^{\text {th }}$ August
Mass of: Earth

1. Use one of the following symbols; $\ll,>$ or \gg, to describe the relationship between:
a. 5.97×10^{24} and 4.87×10^{24} $5.97 \times 10^{24}>4.87 \times 10^{24}$
b. 5.97×10^{24} and 1.99×10^{30} $5.97 \times 10^{24} \ll 1.99 \times 10^{30}$
c. 5.97×10^{24} and $60000000000000000000000000000005.97 \times 10^{24}<6.00 \times 10^{30}$
d. The mass of an electron and 1×10^{-30}

$$
9 \cdot 11 \times 10^{-31}<1 \times 10^{-30}
$$

2. Rearrange the following to make $\boldsymbol{\lambda}$ the subject:
a. $v=f \lambda$

$$
\lambda=v / f
$$

b. $d \sin \theta=n \lambda$
$\lambda=d \sin \theta / n$
c. $w=\lambda D / s$

$$
\lambda=\omega s / \Delta
$$

d. $\theta=\lambda / D \quad \lambda=D \theta$
3. An explorer pulls a sled at 30° to the horizontal with a force of 350 N but the friction of the snow resists the motion with a force of 90 N . The sled initially accelerates at $1.6 \mathrm{~m} \mathrm{~s}^{-2}$.

Calculate the sled's mass.

$$
F=m a \quad m=\frac{F}{a}=\frac{350 \cos 30-90}{1.6}=133
$$

$\approx 130 \mathrm{~kg}$

$18^{\text {th }}$ August

1. Sketch sinusoidal curves with double the frequency and twice the amplitude.

2. Rearrange the following to make \mathbf{r} the subject:
a. $\quad V=k Q / r$

b. $E=k Q / r^{2}$

C. $F=k Q_{1} Q_{2} / r^{2}$

$$
r=\sqrt{\frac{k Q_{1} Q_{2}}{F}}
$$

$$
r=\sqrt{\frac{G M_{m}}{F}}
$$

3. A large catapult has a spring constant of $6000 \mathrm{~N} \mathrm{~m}^{-1}$ and is extended by 2.00 m . An object is fired vertically upwards and reaches a maximum height of 430 m .

Calculate the mass of the object.

$$
\begin{cases}\{h & E_{e}=E_{p} \\ \Delta / 2 e_{e}^{2}=m g \Delta h \\ & m=\frac{k e^{2}}{2 g \Delta h}=\frac{6000 \times 2.00^{2}}{2 \times 9.81 \times 430}=2.84 \mathrm{~kg}\end{cases}
$$

19 th August

1. Sketch a sinusoidal curve on the axis below.

2. Write down the value of \mathbf{A} if $B=54^{\circ}$.

3. Below is part of a table of a student's results from a practical, which was repeated 5 times.

b. Calculate the average force needed to extend the spring by 10 mm

Dat use the amanalous data
$20^{\text {th }}$ August

1. Use one of the following symbols; <, <<, > or >>, to describe the relationship between the:
a. Mass of the Earth and the mass of the Sun
b. Mass of a proton and neutron
c. Mass of a proton and an electron
d. Mass of a black hole and the mass of the Sun
$m_{\text {Earth }} \ll m_{\text {sun }}$
$m_{p}<m_{n}$
$m_{p}>m_{e}$
black bole $\gg \mathrm{m}_{\text {san }}$ * Same black holler can have stellar masses!
2. Calculate the value of \mathbf{B} if $\mathbf{A}=40^{\circ}$.

3. Using a wavefront diagram, explain how refraction occurs as a wave crosses a boundary between two media.

$21^{\text {st }}$ August

1. Sketch a sinusoidal curve on the axis below.

b. Write down the value of C if $D=47^{\circ}$

$$
\begin{aligned}
& c=180-47 \\
& c=133^{\circ}
\end{aligned}
$$

3. A netball held at rest at a height of 1.45 m is dropped by a player. Calculate the speed of the ball just before it hits the floor and how long it takes to fall.

$$
a=9.81 \mathrm{~ms}^{-2}
$$

$$
t=?
$$

$$
\begin{aligned}
& v^{2}=b^{2}+2 a s \\
& v=\sqrt{2 \times 9.81 \times 1.45} \\
& v=5.33 \mathrm{~ms}^{-1} \\
& v=u+a t \\
& t=\frac{v-u}{a}=\frac{5.33}{9.81}=0.544 \mathrm{~s}
\end{aligned}
$$

$22^{\text {nd }}$ August

1. Sketch a sinusoidal curve below - this should be better than the one you drew yesterday!

2. a. Write down the relationship between D and B

$$
D=B
$$

b. Write down the value of \mathbf{A} if $\mathrm{C}=107^{\circ}$
107°

3. Write down the general formula for alpha decay on an element, X, with mass number, A, and atomic number, Z.

Describe what happens in the nucleus when this occurs.

Two protons and two neutrons ejected from an unstable nucleus.
$23^{\text {rd }}$ August

1. Define the conservation of linear momentum.
$P_{\text {byder }}=P_{\text {ever }}$ for a cloed sytem.
2. Describe the phenomena of reflection. Include explanations for both specular and diffuse reflection.

3. Calculate the depth someone would need to dive to, in order to experience a pressure increase equal to that of atmospheric pressure.

$$
\left(\rho_{\mathrm{atm}}=101 \mathrm{kPa} \text { and } \rho_{\mathrm{water}}=1000 \mathrm{~kg} \mathrm{~m}^{-3}\right)
$$

$$
\begin{aligned}
& \Delta p=\rho g \Delta h \\
& \Delta h=\frac{\Delta p}{\rho g}=\frac{101 \times 10^{3}}{1000 \times 9.81}=10.3 \mathrm{~m}
\end{aligned}
$$

$24^{\text {th }}$ August

1. Define the amplitude of a wave.

Max displacement fran its equilibrium position.
2. Describe the difference between conventional DC current and how electrons move in a real circuit.
$D C$ from tue to -re
Electrons move fran -re to toe
3. Explain why increasing the time over which a force acts, decreases the risk of injury during a crash. Include appropriate equations to help support your answer.

$$
F=m a \quad F=\frac{m v-m u}{t} \quad F=\frac{\Delta p}{\Delta t}
$$

For the same change in momentum:

$$
F \propto \frac{1}{t}
$$

Increasing the collision time deceases the fore experienced.
$25^{\text {th }}$ August

1. Define longitudinal and transverse waves - a diagram may be useful.
\leftrightarrow welebcle \rightarrow
2. Describe the effect that decreasing the volume of a gas has on its pressure if the temperature remains constant. Explain why this happens.

$$
p V=\text { constant } \quad \therefore \quad p \propto \frac{1}{V}
$$

More collisions per second so the pressure increases.
3. Write down the general formula for beta minus decay of an element, X, with mass number, A, and atomic number, Z.

Describe what happens in the nucleus when this occurs.

$$
{ }_{Z}^{A} X \rightarrow{ }_{Z+1}^{A} Y+{ }_{-1}^{0} \beta \quad\left(\begin{array}{c}
0 \\
-1
\end{array} \text { sowntiner used }^{0}\right)
$$

A neutron changer into a parts. To conserve charge a negative eduction is ejected fran the mules.
$26^{\text {th }}$ August

1. Sketch the graphs of $y=e^{x}$ and $y=e^{-x}$ on the same axis.

2. Describe the effect that decreasing the temperature of a gas has on its pressure if the volume remains constant. Explain why this happens.

$$
T \propto p
$$

As the temperature decracer the molecules star daw, so they dat collide with the walter of a cat taine with or munch fore. This means the prosewre decraces.
3. A rocket, which has a mass of $3.00 \times 10^{5} \mathrm{~kg}$ accelerates vertically upwards such that it reaches a velocity of $200 \mathrm{~m} \mathrm{~s}^{-1}$ at a height of 5.00 km .

Calculate the total kinetic and gravitational potential energy the rocket has gained from the chemical store of the rocket fuel, assuming its mass is unchanged and that the gravitational field strength is still $9.81 \mathrm{Nkg}^{-1}$ at that height.

$$
\begin{aligned}
& E_{\text {Tot }}=E_{k}+E_{p} \\
& E_{\text {Tad }}=\frac{1}{2} m v^{2}+m g \Delta h \\
& E_{\text {Tod }}=\left(\frac{1}{2} \times 3.00 \times 10^{5} \times 200^{2}\right)+\left(3.00 \times 10^{5} \times 9.81 \times 5000\right) \\
& E_{\text {iota }}=2.07 \times 10^{10} \mathrm{~J}
\end{aligned}
$$

$27^{\text {th }}$ August

1. Define specific heat capacity.

The every required to noise one by of a solestave by one kelvin (one degree (ellis).
2. Describe the effect that increasing the temperature of a gas has on its volume, if the pressure remains constant. Explain why this happens.

$$
T \propto V
$$

Provided the pressure remains coutant, increasing the temperature also inecencers the volume the ger oreupies.
3. Below is a table of results from a practical investigation with a spring.

Plot the points on a graph and draw an appropriate line of best fit.

$28^{\text {th }}$ August

1. Calculate $\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$ for the following values of θ. Give your answers to 3 decimal places.
a. $0^{\circ} 0.000$
b. $30^{\circ} \quad 0.500$
c. $45^{\circ} 0.707$

Check your calculator is set to degrees not radians.
d. $60^{\circ} \quad 0.866$
e. $90^{\circ} \quad 1.000$
2. Derive the relationship between force and momentum from the equations for force ($F=m a$), acceleration $(a=\Delta v / t)$ and momentum ($p=m v$).

$$
\begin{aligned}
& F=m a _a=\frac{v-u}{t} \\
& F=m\left(\frac{v-u}{t}\right) \\
& F=\frac{m v-m u}{t}
\end{aligned}
$$

3. A light ray passes into a transparent block of material from the air. The refractive index of the block is 1.4 and the angle of incidence is 45°.

Using Snell's Law $\left(n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}\right)$ calculate the angle of refraction.

$$
\begin{aligned}
& n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \\
& \theta_{2}=\sin ^{-1}\left(\frac{\sin \theta_{1}}{n_{2}}\right) \\
& \theta_{2}=\sin ^{-1}\left(\frac{\sin 45}{1.4}\right) \\
& \theta_{2}=30^{\circ}
\end{aligned}
$$

29h August

1. Calculate $\cos \theta$ for the following values of θ. Give your answers to 3 decimal places.
a. 0° 1.000
b. $30^{\circ} \quad 0.866$
c. $45^{\circ} \quad 0.707$
d. $60^{\circ} 0.500$
d. $60^{\circ} \quad 0.500$

Compare these to the values frow yesterday.
e. $90^{\circ} \quad 0.000$
2. Describe how an object can accelerate if its speed is constant.

Objects manning with circular motion have a couctaut speed but a changing velocity.
3. Two resistors, of resistance 40Ω and 60Ω, are connected in parallel to a 1.5 V cell. Calculate the current through each resistor and the total current drawn from the cell.

$$
\begin{aligned}
& I_{1}=\frac{1.5}{40}=0.0375=0.038 \mathrm{~A} \\
& I_{2}=\frac{1.5}{60}=0.025 \mathrm{~A}
\end{aligned}
$$

$$
I_{\text {Total }}=I_{1}+I_{2}=0.0375+0.025=0.063 \mathrm{~A}
$$

$30^{\text {th }}$ August - Part 1

1. Trace the following curves.

$30^{\text {th }}$ August - Part 2

2. Draw an appropriate line of best fit for the following graphs.

$31^{\text {st }}$ August - Part 1

1. Trace the following curves.

$31^{\text {st }}$ August - Part 2

2. Draw an appropriate line of best fit for the following graphs.

