$1^{\text {st }}$ May

1. a. Name three factors that affect the resistance of a wire
b. A student has a long piece of metal wire, a battery, leads, a variable resistor, an ammeter and a voltmeter. Draw the test circuit needed to investigate the IV characteristics of the wire

See the digroun betwran $26^{\text {th }}$ and $27^{\text {th }}$ April

The student achieves the following results.
c. Explain the significance of the straight line It has a constant raistance
d. Add a second line showing the expected results for a wire with twice the diameter $2 \times d \quad \therefore 4 \times A \quad \therefore \frac{R}{4}$
e. Explain why the value for current should be kept low in this investigation

To rave hasting Ifets, which call damage the ruistare of the wire

The resistance of a 75 cm length of wire with a diameter of 0.234 mm was measured as 19.2Ω. f. Calculate the resistivity of the metal used

$$
\rho=\frac{R A}{L}=\frac{R \pi d^{2}}{4 L}=\frac{19.2 \times \pi \times\left(0.234 \times 10^{-3}\right)^{2}}{4 \times 0.75}=1.1 \times 10^{-6} \mathrm{dm}
$$

$2^{\text {nd }}$ May

1. Using a suitable test circuit, results are obtained for the current through, and potential difference across, an electrical component. These are shown on the axes below.

a. Add a line of best fit to the points and calculate the gradient of the line
Gradient $=\frac{160 \times 10^{-3}-(-) 160}{8.0-(-) 8.0}$

The current was measured to the nearest mA with an ammeter, but the voltmeter they used measured the voltage to the nearest volt.
b. Add error bars for the potential difference readings to your graph and use these to plot a worst acceptable line
c. Use this to calculate the percentage uncertainty in the gradient value
d. Without using the value for your gradient, calculate the resistance of the component and estimate the uncertainty in this value

$$
R=\frac{V}{I}=\frac{8.0}{0.160}=50 \Omega \quad 15 \% \text { of } 50 \Omega= \pm 7.5 \Omega
$$

e. Explain how the data shown on the graph is related to Ohm's law

$$
V \propto I \quad \therefore \text { ohmic conductor }
$$

$3^{\text {rd }}$ May

1. Describe the motion of the object in the graph below:

 minimum energy required to do this.

$$
E_{k}=\frac{2}{2}=0 v^{2}=0.5 \times 1200 \times\left(\frac{16.6 \times 1000}{360}\right)^{2} L_{\text {Ia ace the thine }}
$$

$$
E_{k}=4.3 \times 10^{5} \mathrm{~J}
$$

3. The following values were recorded for a wire with a uniform cross-sectional area:

Quantity	Percentage Uncertainty / \%
Diameter	2.8
Length	0.4
Potential Difference	0.9
Current	2.2

Calculate the percentage uncertainty in the calculated value of resistivity.

$$
\begin{aligned}
\rho=\frac{R A}{l} & =\frac{V \pi d^{2}}{14 L} \\
\% p & =\% V+(2 \times \% d)+\% I+\% L \\
& =0.9+(2 \times 2.8)+2.2+0.4=9.1 \%
\end{aligned}
$$

$4^{\text {th }}$ May

1. Describe the motion of the object in the graph below.

2. Define:
a. Electric current
b. Potential difference
3. A 2000 kg rocket starts at rest and accelerates from the ground at $0.400 \mathrm{~m} \mathrm{~s}^{-2}$ for the first 5.00 s of its launch.

Calculate its height after 5.00 s and the thrust of the rocket required for this acceleration:
a. On the Earth
i. Height 5.00 m

Values of g: Earth $9.81 \mathrm{~N} \mathrm{~kg}^{-1}$ and Moon $1.60 \mathrm{~N} \mathrm{~kg}^{-1}$
b. On the Moon
i. Height 5.00 m
ii. Force $4.00 \times 10^{3} \mathrm{~N}$

$$
\begin{array}{ll}
s=h & s=c t+\frac{1}{2} a t^{2} \\
u=0 \mathrm{~ms}^{-1} & h=\frac{1}{2} \times 0.400 \times 5.00^{2} \\
a=0.400 \mathrm{~ms}^{-2} & h=10
\end{array}
$$

ii. Force $2.04 \times 10^{4} N \quad t=5.00$ $h=5.00 \mathrm{~m}$

$$
\begin{aligned}
& \text { Trust- Weight }=\text { Rewltant Fore }
\end{aligned}
$$

$5^{\text {th }}$ May

1. A car accelerates to a final velocity of 70 mph in half a minute. It accelerates at a rate of $0.78 \mathrm{~m} \mathrm{~s}^{-2}$. Calculate its initial velocity in $\mathrm{m} \mathrm{s}^{-1}$.
S
$u=$?
$v=70 \mathrm{mph}$
$q=0.78 \mathrm{~ms}^{-2}$
$t=30 \mathrm{~s}$

$$
\begin{aligned}
& v=u+a t \quad 1 \text { mile }=1609 \mathrm{~m} \\
& u=v-a t \\
& u=\left(\frac{70 \times 1609}{3600}\right)-0.78 \times 30=7.9 \mathrm{~ms}^{-1}
\end{aligned}
$$

2. Measure these angles:
a.

b.

C.

3. A human cannon ball, who has a mass of 75 kg , uses a spring powered cannon to launch themselves at an angle of 45° so that they travel a horizontal distance of 25 m . Assuming the launch is 100 \% efficient, calculate the spring constant needed if the spring is fully compressed with an extension of 0.80 m .

$E_{k}=E_{e}$

$$
1 / 2 m v^{2}=1 / 2 k x^{2}
$$

$$
\begin{aligned}
k=\frac{m v^{2}}{x^{2}}=\frac{75 \times 15.660^{2}}{0.80^{2}} & =28740 \\
& =2.9 \times 10^{4} \mathrm{Nm}^{-1}
\end{aligned}
$$

$6^{\text {th }}$ May

1. A transparent semicircular Perspex ${ }^{\circledR}$ block has light from a ray box directed towards the centre, as shown in the diagram.

Values of angle r are recorded for a range of angle i.

$i /{ }^{\circ}$	$r /{ }^{\circ}$	$\sin i / \sin r$
15	10	1.49
30	19	1.54
45	29	1.46
60	35	1.51
75	40	1.50

a. Complete the last column of the table to 3 s.f.

b. Calculate a mean value, to 3 s.f., for the refractive index of Perspex ${ }^{\circledR}$ and the absolute uncertainty in this value

$$
1.50 \quad\left(\frac{1.54-1.46}{2}\right)= \pm 0.04
$$

The Perspex ${ }^{\circledR}$ block is replaced by a crown glass block with a refractive index of 1.52 .
c. Calculate the difference in the angles of refraction for an angle of incidence of 75°

$$
\begin{gathered}
n=\frac{\sin i}{\sin r} \quad r=\sin ^{-1}\left(\frac{\sin i}{n}\right)=\sin ^{-1}\left(\frac{\sin 75}{1.52}\right)=39.5^{\circ} \\
40-39.5=0.5^{\circ}
\end{gathered}
$$

d. Explain whether this difference could be measured using a standard school protractor No, this is hus then the volution of a potato (1^{1})
$7^{\text {th }}$ May

1. Write the following purely in their base units and their more commonly used unit:
a. Nm^{-2}

$$
\operatorname{kg} m^{-1} s^{-2}
$$

$$
\mathrm{Pa}
$$

b. Js^{-1}

$$
k_{g} m^{2} s^{-3}
$$

c. $\mathrm{J} \mathrm{C}^{-1}$
$\operatorname{kg} \mathrm{m}^{2} \mathrm{~s}^{-3} A^{-1}$
d. $\vee \mathrm{A}^{-1}$
$\operatorname{kg} m^{2} s^{-3} A^{-2} \quad d$
2. Complete the following table:

1. On the $8^{\text {th }}$ May at 5.00 pm , the intensity of light from the Sun at ground level is measured as $900 \mathrm{~W} \mathrm{~m}^{-2}$. If the sunlight is incident on solar panels that are 20% efficient, calculate the area of solar panels needed to power a 2.0 kW kettle.

$$
\frac{2000}{900}=2.22 \mathrm{~m}^{2} \quad \frac{2.22}{0.20}=11.11=11 \mathrm{~m}^{2}
$$

2. Define:
a. Work function
b. Threshold frequency
3. The work function for zinc is 3.74 eV . Calculate the:
a. Work function in joules

$$
3.74 \times 1.60 \times 10^{-19}=5.98 \times 10^{-19} \mathrm{~J}
$$

b. The threshold frequency

$$
\phi=h \text { fo } \quad f_{0}=\frac{\phi}{h}=\frac{5.984 \times 10^{-19}}{6.63 \times 10^{-34}}=9.03 \times 10^{14} \mathrm{~Hz}
$$

c. The maximum wavelength of incident photons for which photoelectrons can be emitted

$$
\lambda=\frac{c}{f_{0}}=\frac{3.00 \times 10^{8}}{9.03 \times 10^{14}}=3.32 \times 10^{-7} \mathrm{~m}
$$

1. A student has a gold leaf electroscope which they plan to charge by induction using a positively charged Perspex ${ }^{\circledR}$ rod.
a. Briefly describe how this process can produce a charged electroscope

See the bunk of the book dor the answers total, or with the video were 1 explain this.

b. A negatively charged electroscope with a clean zinc top plate can be discharged with ultraviolet light of wavelength $0.25 \mu \mathrm{~m}$, if they increase the intensity of the UV arriving explain how will this affect the energy and number of photoelectrons emitted each second
2. The threshold frequency for a negatively charged electroscope corresponds to green light. A student initially shines red light at the electroscope.
a. Explain if it will discharge

The student then shines a variable light source at the electroscope, starting with blue light then increasing the frequency.
b. Describe how will this affect the photoelectrons emitted

$10^{\text {th }}$ May

1. Write the unit more commonly used for these quantities expressed in their base units:
a. $\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$

N
b. $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \quad J$
c. $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-3}$
2. Define:
a. Potential difference
b. Electromotive force
3. A uniform beam of length 5.0 m and mass 40 kg hangs on two wires A and B. Wire A is 2.0 m from the centre and wire B is 1.0 m from the centre of the beam.

Calculate the tension in each wire.
$\mu^{2}={ }_{\mu}^{\alpha}$

Anat A.
$(40 \times 9.81 \times 2.0)=T_{B} \times 3.0$
$T_{B}=261.6=260 \mathrm{~N}$
$F \uparrow=F \downarrow \quad T_{A}+T_{B}=40 g \quad T_{A}=(40 \times 1.81)-261.6$

$$
T_{A}=130.8=130 \mathrm{~N}
$$

$11^{\text {th }}$ May

1. A student is investigating the current-voltage characteristic of a filament bulb.

PD / V	0.0	2.0	4.0	6.0	8.0	10.0
Current / A	0.00	0.60	1.05	1.40	1.65	1.85

a. Use the data in the table to calculate the resistance when the PD is:
i. 4.0 V
ii. $8.0 \mathrm{~V} \quad R=\frac{v}{I}\left\{\begin{array}{l}=4.0 / 1.05=3.8 \mathrm{~J} \\ \text { ii. } 10.0 \mathrm{~V}\end{array} \quad 6.0 / 1.40=\underline{4.8} \mathrm{l}\right.$
$=10.0 / 1.85=5.4 \mathrm{~J}$
b. Plot the results in the table on the axes provided.

c. Calculate $\mathbf{1 / g r a d i e n t ~ o f ~ t h e ~ l i n e ~ a t ~} 8.0 \mathrm{~V}$ and compare this to the value of a . part ii.

$12^{\text {th }}$ May

1. A diode is connected in series with an ammeter, a resistor, and a variable power supply. A voltmeter is connected in parallel with the diode. The PD across the diode, V , is varied, including changing the polarity, and the current, I, is recorded for each value.

PD / V	-0.50	-0.25	0.00	0.20	0.50	0.60	0.64	0.68	0.70	0.72
Current $/ \mathrm{mA}$	0.0	0.0	0.0	0.0	1.0	3.0	6.0	22	40	80.0

a. Plot the data

b. Calculate the resistance of the diode at:

$$
\begin{aligned}
& \text { i. } 0.60 \vee R=V / I=0.60 / 3.0 \times 10^{-3}=200 \lambda \\
& \text { ii. } 0.70 \vee R=V / I=0.70 / 40 \times 10^{-3}=18 \lambda
\end{aligned}
$$

c. Research how a diode can be used in half-wave and full-wave rectification for an AC supply and sketch a graph of PD against time for these two uses

$13^{\text {th }}$ May

1. The power output from a wind turbine is proportional to the wind speed cubed. If the power output is 2.0 MW when the wind speed is $8.0 \mathrm{~m} \mathrm{~s}^{-1}$, calculate the wind speed needed for a power output of 5.2 MW .

$$
P \propto v^{3} \quad \frac{P_{1}}{v_{1}^{3}}=\frac{P_{2}}{v_{2}^{3}} \quad v_{2}=\sqrt[3]{\frac{P_{2}}{P_{1}} \cdot v_{1}^{3}}=\sqrt[3]{\frac{5 \cdot 2}{2 \cdot 0} \cdot 8 \cdot 0^{3}}=11 \mathrm{~ms}^{-1}
$$

2. The following values were recorded:

Quantity	Value	Uncertainty
Potential Difference $/ \mathrm{V}$	1.5	± 0.1
Current / A	0.79	± 0.01

$\%$ U 6.7\% 1.3%

Calculate the resistance, including its uncertainty.

$$
\begin{array}{r}
R: V / I=1.5 / 0.79=1.9 \Omega \quad \% R=\% V+\% I=6.7+1.3=8.0 \% \\
8.0 \% \text { of } 1.9= \pm 0.15 \Omega
\end{array}
$$

Quantity	Percentage Uncertainty / \%
Distance to screen	0.2
Fringe spacing	4.7
Slit separation	2.6

Calculate the percentage uncertainty in the calculated value of wavelength.

$$
\begin{aligned}
w=\frac{\lambda D}{s} \quad \lambda=\frac{v s}{D} \quad \% \lambda & =\% D+\% w+\% s \\
& =0.2+4.7+2.6 \\
& =\underline{7.5} \%
\end{aligned}
$$

1. A circuit is constructed where a variable potential difference is applied across a light emitting diode (LED). When the PD equals the activation voltage, V_{A}, the LED lights up. As each electron moves through the diode, a photon is emitted, and the work done on each electron by the PD determines the photon energy $E=h f=h c / \lambda$.
a. Calculate how much energy, in eV and J , an electron would gain passing through a PD of $V_{A}=2.30 \mathrm{~V}$

i.ev $\quad 2.30 \mathrm{eV}$
ii. J

$$
2.30 \times 1.60 \times 10^{-19}=3.68 \times 10^{-19} \mathrm{~J}
$$

Different colour LEDs of known wavelength are used in the circuit and the activation PD measured.

Colour	λ / nm	$\mathrm{V}_{\mathrm{A}} / \mathrm{V}$	Planck constant $/ \times 10^{-34} \mathrm{Js}$
Violet	415	3.00	$\mathbf{6 . 6 4}$
Blue	465	2.60	$\mathbf{6 . 4 5}$
Green	550	2.26	$\mathbf{6 . 6 3}$
Yellow	600	2.33	$\mathbf{7 . 4 6}$
Red	650	1.92	$\mathbf{6 . 6 6}$

b. Using the equation $\mathrm{eV}_{\mathrm{A}}=h c / \lambda$, calculate a value for Planck constant, h , for each colour
c. Ignoring the anomaly, calculate a mean value for h, including its uncertainty

$$
\begin{aligned}
& M_{\text {ean }}=\frac{6.60 \times 10^{-34} \mathrm{Js} \quad \frac{6.66-6.45}{2}}{}= \pm 0.11 \\
&= \pm 0.11 \times 10^{-34} \mathrm{Js}
\end{aligned}
$$

d. Using the accepted value for ' h ', calculate the expected activation PD you would expect for the yellow LED

$$
V_{A}=\frac{h_{C}}{e \lambda}=\frac{6.63 \times 10^{-34} \times 3.00 \times 10^{8}}{1.60 \times 10^{-19} \times 600 \times 10^{-9}}=2.07 \mathrm{~V}
$$

$15^{\text {th }}$ May - Part 1

1. A vacuum photocell can be used to investigate the photoelectric effect. EM waves above the threshold frequency are shone onto a metal surface at A and photoelectrons are emitted. These travel across to a collector plate at B.

A PD is applied across A and B, with B negative with respect to A. As this PD is gradually increased from zero, then at a value V_{s} (called the stopping voltage) the current recorded on the ammeter decreases to zero. This happens when the PD is large enough that the electrical work done in stopping an electron is equal to $\mathrm{KE}_{\text {max }}$. This is equal to the charge on an electron multiplied by V_{s} between A and $\mathrm{B}\left(K E_{\text {max }}=e V_{s}\right)$.

The frequency, f , of the EM waves is changed and the stopping voltage, V_{s}, recorded.
a. Complete values for the maximum kinetic energy $\mathrm{KE}_{\text {max }}$ in the table below

$\mathrm{f} / \times 10^{14} \mathrm{~Hz}$	$\mathrm{~V}_{\mathrm{s}} / \mathrm{V}$	$\mathrm{KE}_{\max } / \times 10^{-19} \mathrm{~J}$
7.0	0.53	0.85
8.5	1.25	2.00
10.0	1.75	$\mathbf{2 . 8 0}$
12.0	2.50	$\mathbf{4 . 0 0}$
13.5	3.19	$\mathbf{5 . 1 0}$
15.0	3.75	$\mathbf{6 . 0 0}$

$15^{\text {th }}$ May - Part 2

1. b. Use values from your table to plot a graph showing maximum kinetic energy, $K E_{\text {max }}$ against frequency, f

c. Calculate the gradient of your graph (this should be equal to the Planck constant)

$$
\text { Gradient }=\frac{6.0 \times 10^{-19}}{(15-5.5) \times 10^{14}}=6.3 \times 10^{-34} \mathrm{Js}
$$

d. Use the intercept on the frequency axis (x-axis) to calculate the work function for the metal used for plate A in electronvolts

$$
\begin{aligned}
f_{0} & =5.5 \times 10^{14} \mathrm{H}_{2} \\
\phi & =h f_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \phi=6.63 \times 10^{-34} \times 5.5 \times 10^{14} \\
& \phi=3.6465 \times 10^{-19} \mathrm{~J} \\
& \therefore \phi=2.3 \mathrm{eV}
\end{aligned}
$$

$16^{\text {th }}$ May

1. A student with mass 60 kg runs up a ramp 10 m long at 30° to the horizontal in 6.0 s . They then do 4 pull-ups, raising their body 0.50 m each time, in a total time of 10 seconds.

Calculate the ratio of their leg power to arm power.
Arm

$$
\begin{aligned}
& h=10 \times \sin 30=5.0 \mathrm{~m} \\
& P_{\text {Log }}=\frac{m g h}{t}=\frac{60 \times 9.81 \times 5.0}{6.0} \\
& P_{\text {Leg }}=490.5 \mathrm{~W}
\end{aligned}
$$

$$
\begin{gathered}
P_{\text {Arm }}=\frac{4 \times 60 \times 9.81 \times 0.50}{10} \\
P_{\text {Arm }}=117.72 \\
\therefore 4.2 \times
\end{gathered}
$$

2. The EMF of a battery is 6.0 V . When the battery provides a current of 1.4 A , its terminal PD drops to 4.1 V . Calculate the internal resistance of the battery.

$$
E=V+I r \quad r=\frac{E-V}{I}=\frac{6.0-4.1}{1.4}=\frac{1.4 \mathrm{~J}}{}
$$

3. A uniform beam of length 4.0 m and mass 48 kg hangs on two wires A and B. Wire A is 1.0 m from the centre and wire B is 1.5 m from the centre.

Calculate the tension in each wire.

$$
\tilde{\mu}^{2}=\bar{\mu}
$$

Abas A

$$
F \uparrow=F \downarrow
$$

$$
\begin{array}{r}
48 \times 9.81 \times 1.0=T_{B} \times 2.5 \quad T_{B}=188.352 \\
T_{B}=190 \mathrm{~N} \\
T_{A}+T_{B}=48 \mathrm{~g} \quad T_{A}=(48 \times 9.81)-188.352 \\
T_{A}=280 \mathrm{~N}
\end{array}
$$

$17^{\text {th }}$ May

1. A magnesium atom has 12 protons, 12 electrons and 12 neutrons. Assuming the mass of the nucleus is equal to the sum of the masses of the individual protons and neutrons, calculate the specific charge for:
$\begin{array}{ll}\text { a. The atom } & Q=0 \quad \therefore \quad \underline{O}\left(\mathrm{~kg}^{-1}\right. \\ \text { b. The nucleus } \\ \text { c. An } \mathrm{Mg}^{2+} \text { ion } & \frac{12 \times 1.60 \times 10^{-19}}{\left(12 \times 1.673 \times 10^{-27}\right)+\left(12 \times 1.675 \times 10^{-27}\right)}=4.78 \times 10^{7} \mathrm{Ckg}^{-1}\end{array}$
2. Define:
a. A photoelectron
b. A photon
$2 \times 1.60 \times 10^{-19}$
$\left(10 \times 9.11 \times 10^{-31}\right)+\left(12 \times 1.673 \times 10^{-27}\right)+\left(12 \times 1.675 \times 10^{-27}\right)$
$=7.96 \times 10^{6} \mathrm{Ckz}^{-1}$
3. Explain why the resistance of a filament lamp increases with current.

$18^{\text {th }}$ May - Part 1

1. Trace the following curves.

18 ${ }^{\text {th }}$ May - Part 2

2. Add a second sinusoidal curve for the following displacement-time graphs for a wave:

3. Calculate the energy of a gamma ray photon with wavelength 2.00 pm in:

$$
\text { a. } E=h f=\frac{h c}{\lambda}=\frac{6.63 \times 10^{-34} \times 3.00 \times 10^{8}}{2.00 \times 10^{-12}}=9.95 \times 10^{-14} \mathrm{~J}
$$

b. eV

$$
9.95 \times 10^{-14} \div 1.60 \times 10^{-19}=6.22 \times 10^{5} \mathrm{eV}
$$

2. An alpha particle has a mass of $6.65 \times 10^{-27} \mathrm{~kg}$ and kinetic energy of 5.0 MeV . Calculate:
a. Its speed in $\mathrm{m} \mathrm{s}^{-1}$

$$
E_{k}=\frac{1}{2} m V^{2} \quad V=\sqrt{\frac{2 E_{K}}{m}}=\sqrt{\frac{2 \times 5.0 \times 10^{6} \times 1.60 \times 10^{-19}}{6.65 \times 10^{-27}}}=1.6 \times 10^{7} \mathrm{~m}^{-1}
$$

b. Its speed as a percentage of light speed

$$
\frac{v}{c} \times 100=\frac{1.55 \times 10^{7}}{3.00 \times 10^{8}} \times 100=5.2 \%
$$

3. A 700 g mass is suspended from two fixed wires as shown below.

Calculate the tension in each wire.

$20^{\text {th }}$ May

1. Calculate the wavelength of a photon with an energy of 780 meV and state the type of $E M$ wave this is.

$$
E=\frac{h c}{\lambda} \quad \lambda=\frac{h c}{E}=\frac{6.63 \times 10^{-34} \times 3.00 \times 10^{8}}{780 \times 10^{-3} \times 1.60 \times 10^{-19}}=\frac{1.59 \times 10^{-6}}{\text { Iuftarcd }}
$$

2. Define:
a. Interference
b. The principle of superposition
3. a. State the mass of an electron

$$
\underline{9 \cdot 11 \times 10^{-31} \mathrm{~kg}}
$$

b. Using $E=m c^{2}$, calculate the minimum energy needed to produce an electron-positron pair

$$
E=m c^{2}=2 \times 9.11 \times 10^{-31} \times\left(3.00 \times 10^{8}\right)^{2}=1.64 \times 10^{-13} \mathrm{~J}
$$

c. Calculate the minimum frequency of the photon required for this

$$
f=\frac{E}{h}=\frac{1.6398 \times 10^{-13}}{6.63 \times 10^{-34}}=\underline{2.47 \times 10^{20}} \mathrm{~Hz}
$$

d. Explain why electron-positron pairs are the most commonly produced particles in pair production
Elutrass ore the lanes men fundamental paticidrs so require the leas ewes to crate.

$21^{\text {st }}$ May - Part 1

1. Two coherent waves P and Q are in phase. They interfere and superpose. Sketch the resultant wave.

$21^{\text {st }}$ May - Part 2

2. Two coherent waves R and S are out of phase by $\pi / 2$ radians. They interfere and superpose. Sketch the resultant wave.

$22^{\text {nd }}$ May
3. Describe the conditions under which total internal reflection, TIR, occurs.

$$
n_{1}>n_{2}
$$

2. Each cell has an EMF of 1.2 V and internal resistance of 0.10Ω. Calculate the total EMF and total internal resistance for the batteries below:
a.

c.

b.

d.

3. An 800 g mass is suspended from two fixed wires as shown below.

Calculate the tension in each wire.

$23^{\text {rd }}$ May

1. a. Calculate the critical angle for a semicircular glass block made of crown glass with a refractive index, n, of 1.52

$$
\theta_{c}=\sin ^{-1}\left(\frac{1}{n}\right)=\sin ^{-1}\left(\frac{1}{1.52}\right)=41.1^{\circ}
$$

Three rays of light are directed towards the centre of the block as shown.
b. Complete the paths of the rays with different angles of incidence

i. Ray 1	$i_{1}=17^{\circ}$	$r=26^{\circ}$
ii. Ray 2	$i_{2}=41^{\circ}=\theta_{C}$	$r=90^{\circ}$
ii. Ray 3	$i_{3}=63^{\circ} \therefore$ TR	$r=63^{\circ}$

2. Calculate the critical angles for diamond-air and diamond-water boundaries.

$$
\mathrm{n}_{\text {diamond }}=2.42 \quad \mathrm{n}_{\text {water }}=1.34
$$

$$
\begin{aligned}
& \text { Diamond -Air } \\
& \theta_{c}=\sin ^{-1}\left(\frac{1}{2 \cdot 42}\right)=24.40
\end{aligned}
$$

Diauond-Water

$$
\theta_{c}=\sin ^{-1}\left(\frac{1.34}{2.42}\right)=33.6^{\circ}
$$

3. A step-index optical fibre is made of flint glass where $\mathrm{n}=1.61$ and crown glass as in Q 1 above.
a. State which of these would be the core and which would be the cladding Flint core, crown cladding $\left(n_{1}>n_{2}\right)$
b. Calculate the critical angle at the core-cladding boundary in this optical fibre

$$
\theta_{c}=\sin ^{-1}\left(\frac{1.52}{1.61}\right)=70.80
$$

c. Explain the advantage of a large critical angle for an optical fibre

Minimiser modal dispersion

$24^{\text {th }}$ May

1. Sketch a sinusoidal curve for the following graphs:

$25^{\text {th }}$ May
2. Write the following purely in their base units and their more commonly used unit:
a. $\mathrm{J} \mathrm{s}^{-1}$
b. Nm^{-2}

$$
\operatorname{kg} \mathrm{m}^{2} s^{-2} \cdot s^{-1}=\operatorname{kg} \mathrm{m}^{2} s^{-3}
$$ $\mathrm{kg} m s^{-2} \cdot m^{-2}=\operatorname{kgm} \mathrm{m}^{-2}$

c. $\mathrm{J} \mathrm{C}^{-1}$ $\mathrm{kg} m^{2} s^{-2} \cdot \Lambda^{-1} s^{-1}=\operatorname{kg~m}^{2} s^{-3} \Lambda^{-1}$
2. Define:
a. Refraction
b. Diffraction
3. A 500 g mass is suspended from two fixed wires as shown below.

Calculate the angle $\boldsymbol{\theta}$ when the tension in wire B is twice the tension in wire A.

$$
\varepsilon F \rightarrow=0
$$

$T \sin 36=2 T \sin \theta$

$$
\begin{aligned}
\sin \theta & =\frac{\sin 36}{2} \\
\theta & =17^{\circ}
\end{aligned}
$$

$26^{\text {th }}$ May

1. An electron absorbs a photon such that it changes from an energy level of -11.0 eV to an energy level of -5.0 eV . Calculate the energy of the photon that is absorbed in joules.

$$
\Delta E=6.0 \mathrm{eV}=6.0 \times 1.60 \times 10^{-19}=9.6 \times 10^{-19} \mathrm{~J}
$$

2. Define:
a. An ion
b. The ground state for an atom
3. A photon of wavelength 700 nm is incident on a stationary hydrogen atom (we can assume the mass of the hydrogen atom is solely due to a proton).

By considering the conservation of momentum, calculate the velocity of the atom after this event.

$$
\begin{aligned}
& \lambda=\frac{h}{m_{q} u} \\
& \quad P_{\text {tudor }}=P_{\text {potter }} \\
& m_{r} u=m_{p p} v \\
& \begin{aligned}
\lambda=\frac{h}{m_{p} V} \quad v & =\frac{h}{\lambda m_{p}}
\end{aligned}=\frac{6.63 \times 10^{-34}}{700 \times 10^{-9} \times 1.673 \times 10^{-27}} \\
& v
\end{aligned}
$$

$27^{\text {th }}$ May

1. A datalogger was used to measure the velocity of a glider on an air track. Determine the result that should be recorded for ' v ' and calculate the percentage uncertainty in the data:

$v / \mathrm{m} \mathrm{s}^{-1}$	3.28	3.14	3.14	3.39	3.21

$$
M_{\text {ear }}=3.23 \mathrm{~ms}^{-1} \quad \% \mathrm{U}=\frac{(3.39-3.14) \div 2}{3.23} \times 100=3.9 \%
$$

2. Read the quantity measured in the following diagrams of vernier scales.

3. Calculate the total displacement of the object in the $v-\dagger$ graph below.

$28^{\text {th }}$ May

1. Write down the units for:
a. Momentum
b. Resistivity
$k g m s^{-1}$
Sm
c. Work function
d. Impulse
Jor el

Ns
2. Microwaves of wavelength 2.7 cm pass through two gaps in a metal screen that have their centres 15 cm apart. A microwave receiver is moved perpendicular to the direction of the beam at a distance of 1.5 m .

Calculate the distance between adjacent points of maximum intensity.

$$
w=\frac{\lambda D}{s}=\frac{2.7 \times 10^{-2} \times 1.5}{0.15}=0.27 \mathrm{~m}
$$

3. Estimate the total displacement of the object in the v - \dagger graph below.

$$
\begin{gathered}
7.875+(-19.75 \\
\approx-1.9 \mathrm{~m}
\end{gathered}
$$

$29^{\text {th }}$ May

1. Describe why wave theory cannot explain the photoelectric effect.

> See the buck of the book for the answers today, or watch the rides where 1 explain this.
2. Explain how experiments on the photoelectric effect disagree with wave theory.
3. Explain how Einstein's model of photons explains the photoelectric effect.

30 th May

1. Underline the vector quantities:

Resistivity
Momentum
Current

Acceleration
Young modulus
Resistance

Upthrust
Strain
Displacement
2. Calculate the maximum kinetic energy, in J and eV , of a photoelectron that has been emitted from a metal with a work function of 3.5 eV which has absorbed a photon of frequency $9.2 \times 10^{15} \mathrm{~Hz}$.
a. J $h f=\phi+K E_{\text {max }}$

$$
\begin{aligned}
& K E_{\text {max }}=\left(6.63 \times 10^{-34} \times 9.2 \times 10^{15}\right) \\
&\left(-3.5 \times 1.60 \times 10^{-19}\right) \\
&= 5.5 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

b. eV

$$
5.540 \div 1.60 \times 10^{-19}=35 \mathrm{eV}
$$

3. a. Calculate the minimum frequency of a photon that can free an electron from a metal surface which has a work function of 4.00 eV

$$
h f_{0}=\phi \quad f_{0}=\frac{\phi}{h}=\frac{400 \times 1.60 \times 10^{-19}}{6.63 \times 10^{-34}}=\underline{9.65 \times 10^{14}} \mathrm{~Hz}
$$

b. Calculate the wavelength for this frequency

$$
\lambda=\frac{c}{f_{0}}=\frac{3.00 \times 10^{8}}{9.65 \times 10^{44}}=3.11 \times 10^{-7} \mathrm{~m}
$$

c. State what band of EM radiation this is

$$
311 \mathrm{~nm} \therefore \underline{U V}
$$

$31^{\text {st }}$ May

1. A ray of light passes through a semicircular block and refracts, as shown in the diagram below.

Identify which material the block is made from.

2. a. Calculate the maximum velocity of a photoelectron that has been emitted from a metal with a work function of 1.90 eV after it has absorbed a photon of frequency $6.00 \times 10^{15} \mathrm{~Hz}$

$$
\begin{aligned}
& h f=\phi+\frac{1}{2} m v^{2} \\
& v=\sqrt{\frac{2(h f-\phi)}{m}}=\sqrt{\frac{2 \times\left(\left(6.63 \times 10^{-34} \times 6.00 \times 10^{15}\right)-1.90 \times 1.60 \times 10^{-19}\right)}{9.11 \times 10^{-31}} \quad v=2.84 \times 10^{6} \mathrm{~ms}^{-1}}
\end{aligned}
$$

b. Determine the stopping potential for this frequency and metal (remember the $15^{\text {th }} \mathrm{May}$)

$$
\begin{aligned}
& K E_{\text {wax }}=e V_{s} \quad\left(\text { haw } 15^{\text {th }} M_{\text {bay }}\right) \\
& V_{s}=\frac{1 / 2 \times 9.11 \times 10^{-31} \times\left(2.84 \times 10^{2}\right)^{2}}{1.60 \times 10^{-14}}=22.96 \\
& V_{s}=23.0 \mathrm{~V}
\end{aligned}
$$

