$1^{\text {st }}$ October

1. Calculate the diameter, in m , of a :
a. Circle with an area of $1.0 \mathrm{~m}^{2}$

$$
d=\sqrt{\frac{4 A}{J}} \quad d=1.1 \mathrm{~m}
$$

b. Sphere with a surface area of $1.0 \mathrm{~m}^{2} d=\sqrt{\frac{A}{J J}} \quad d=0.56 \mathrm{~m}$
c. Sphere with a volume of $1.0 \mathrm{~m}^{3}$

$$
d=\sqrt[3]{\frac{6 \mathrm{~V}}{J}} \quad d=1.2 \mathrm{~m}
$$

2. Read the quantity measured in the following diagrams of vernier scales.

3. Calculate the current if 1.0×10^{-2} moles of electrons pass a point in 1.0 hour.
charge per e^{-}

$$
\begin{aligned}
I=\frac{Q}{t} & =\frac{1.0 \times 10^{-2} \times 6.02 \times 10^{23} \times 1.60 \times 10^{-19}}{60 \times 60} \\
I & =0.27 \mathrm{~A}
\end{aligned}
$$

$2^{\text {nd }}$ October

1. Write down the mass in kg , to 4 sf , of:
a. An electron
b. A proton
C. A neutron
d. An alpha particle

$$
\begin{aligned}
& 04 \text { sf, of: } \\
& 9.109 \times 10^{-31} \mathrm{~kg} \\
& 1.673 \times 10^{-27} \mathrm{~kg} \\
& 1.675 \times 10^{-27} \mathrm{~kg} \\
& 6.645 \times 10^{-27} \mathrm{~kg}
\end{aligned}
$$

2. Read the quantity measured in the following diagrams.

3. Describe the differences between two waves propagated on two strings with the same wavelength and amplitude but one is stationary (also called a standing wave) and the other is progressive.

A progressive nave tangles every fran ore place to anther.

A stationary wave stores cures.

$3^{\text {rd }}$ October

1. Rearrange the following to make d the subject:
a. $E=V / d \quad d=V / E$
b. $A=\pi d^{2} / 4 \quad d=\sqrt{\frac{4 A}{J}}$
c. $n \lambda=d \sin \theta$
$d=u \lambda / \sin \theta$
2. Read the quantity measured in the following diagrams.

3. Calculate the refractive index of a material if light travels at $2.6 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ through it.

$$
n=\frac{c}{V}=\frac{3.00 \times 10^{8}}{2.6 \times 10^{8}}=1.2 \text { no units }
$$

$4^{\text {th }}$ October

1. Rearrange the following to make \mathbf{M} the subject:
a. $V_{g}=-G M / r \quad M=-r V_{g} / G$

The negative sign shows
b. $g=-G M / r^{2} \quad \mu=-r^{2} g / G$ that gravity is an
c. $F=-G M m / r^{2} \quad M=-r^{2} F / G u$ attractive fore.
2. Read the quantity measured in the following diagrams.

3. An artillery gun of mass 1860 kg is initially at rest. It fires a shell of mass 14.9 kg with a muzzle velocity of $708 \mathrm{~m} \mathrm{~s}^{-1}$. Calculate the recoil velocity of the gun.

Byoue

$$
u=0 u^{-1}
$$

$$
P_{\text {ryder }}=0
$$

After
14.9 kg

$$
\begin{aligned}
P_{\text {deter }}=0=m_{1} v_{1}+m_{2} v_{2} & =\left(1860 \times v_{1}\right)+(14.9 \times 708) \\
v_{1} & =-5.67 \mathrm{~ms}^{-1}(\mathrm{left})
\end{aligned}
$$

$5^{\text {th }}$ October

1. Write the following distances in standard form to 3 significant figures - and find out what they represent.
a. 149597871000 m
$1.50 \times 10^{11} \mathrm{~m}$
b. 30856775800000000 m
c. 9460730473000000 m

Astronomical Parsee Lightyear
2. Read the quantity measured in the following diagrams.

3. Explain why electricity is transmitted at very high AC voltages in overhead cables across the country.

This can be changed with a trongfomer Power $\quad \underset{\text { bes }}{\triangle P}=I^{2} R$ This is due to the cable $4 I$ reduced by $10, I^{2}$ roved by 100 , so the pacer losses ado reduced.
$6^{\text {th }}$ October

1. Write the following quantities in standard form to $\mathbf{3}$ significant figures - and find out what they represent.
a. 6378100 m
b. 5972200000000000000000000 kg

5.97×10^{24}
1.99×10^{30}
$r_{\text {Earth }}$
M Earth
${ }^{4}$ Sen
2. A ball bearing is released from a height of 1.62 m . Calculate how long it will take to reach the ground.

$$
\begin{aligned}
& s=1.62 \mathrm{~m} \\
& u=0 \mathrm{~ms}^{-1} \\
& y \\
& a=9.81 \mathrm{~ms}^{-2} \\
& t=?
\end{aligned}
$$

$$
\begin{aligned}
& s=4 t+\frac{1}{2} a t^{2} \\
& t=\sqrt{\frac{2 \mathrm{~s}}{a}}=\sqrt{\frac{2 \times 1.62}{9.81}} \\
& t=0.575 \mathrm{~s}
\end{aligned}
$$

3. The block is at rest on a slope. Calculate the size of the friction acting up the slope if the block's weight is 10 N and $\theta=38^{\circ}$.

Normal Gated Fore

$7^{\text {th }}$ October

1. Calculate the mean, mode and median of the following set of numbers:

$$
\begin{aligned}
& M_{\text {can }}=102 \\
& M_{\text {ode }}=104 \\
& \text { Median }=102.5
\end{aligned}
$$

$$
252,18 x, 100,9 x, 2 x, 12 x, 124,12 x, 120,18 x
$$

2. A ball bearing is released from a height of 1.62 m . Calculate its velocity as it reaches the ground.

$$
\begin{array}{ll}
s=1.62 \mathrm{~m} & v^{2}=u^{2}+2 a s \\
u=0 \mathrm{~ms} & v=\sqrt{2 \times 9.81 \times 1.62} \\
v=? & v=5.64 \mathrm{~ms}^{-1} \\
a=9.81 \mathrm{~ms}^{-2} & v=2 .
\end{array}
$$

t
3. The block is sliding down the slope at a constant velocity. Calculate the size of the friction acting up the slope if the block's weight is 10 N and $\theta=38^{\circ}$.

Normal Contact Force

$8^{\text {th }}$ October (part 1)

1. Draw an appropriate line of best fit for the following graphs.

$8^{\text {th }}$ October (part 2)

2. Sketch a sinusoidal curve for the following graphs:

Same frequency and same amplitude
$2 \times$ frequency and same amplitude
$2 \times$ frequency and $2 \times$ amplitude

See the sketcher in

the back of the book.

Half the frequency and $2 x$ amplitude
4. Half the frequency and half the amplitude

9th October

$$
A=4 \pi r^{2}=4 \frac{\pi d^{2}}{4}=\pi d^{2}
$$

1. Calculate the surface area, in m^{2}, of a sphere with a diameter of:
a. 2.00 m
$12.6 \mathrm{~m}^{2}$
b. 1.00 m
$3.14 \mathrm{~m}^{2}$

$0.785 m^{2}$
$0.196 \mathrm{~m}^{2}$
2. Describe what is meant by accuracy.

An accurate rect is close to the true, or accepted, value.
If you measure 'g' ar 9.6 that is close to $9.81 \mathrm{~ms}^{-2}$, the tree value.
3. Briefly describe how you would investigate the IV characteristics of a resistor. Include a suitable circuit diagram, measurements recorded and how uncertainties would be reduced.

$U_{x e}$ the variable resistor to change V and I, making sue to only close the switch when taking a reading.
Take +re and -re valuer of V and I.

$10^{\text {th }}$ October

1. Calculate the volume, in m^{3}, of a sphere with a radius of:
a. $\quad 6.37 \times 10^{3} \mathrm{~km}$
$1.08 \times 10^{21} \mathrm{~m}^{3}$ Earth
b. $6.96 \times 10^{8} \mathrm{~m}$
$V=\frac{4}{3} \pi r^{3}$
$1.41 \times 10^{27} \mathrm{~m}^{3}$ San
c. $0.10 \mathrm{~nm} \quad \frac{4}{3} \quad 4.2 \times 10^{-30} \mathrm{~m}^{3}$ Atom
d. 1.0 fm
$4.2 \times 10^{-45} \mathrm{~m}^{3}$ Nucleus
2. Describe what is meant by resolution.

The smallest scale division on a measuring instremat.

3. Draw a simple diagram of a stationary/standing wave and label the nodes and antinodes:
a. On a string

$11^{\text {th }}$ October

1. Convert the following distances to metres:
a. $3.14 \times 10^{4} \mathrm{~mm}$
31.4 m
b. $31.4 \times 10^{-6} \mu \mathrm{~m}$
3.14×10^{-11}
m
c. $0.0314 \times 10^{6} \mathrm{~km}$
3.14×10^{7} m
d. $31.4 \times 10^{14} \mathrm{~cm}$
3.14×10^{13}
m
e. $3.14 \times 10^{-3} \mathrm{~mm}$
3.14×10^{-6} m
2. Read the quantity measured in the following diagrams for a screw gauge micrometer.

3. When reading any scale in experimental physics, describe what can be done to minimise parallax error. Include a description of what parallax error is.

$12^{\text {th }}$ October
4. Convert the following distances to metres:
a. $3.14 \times 10^{-4} \mathrm{~nm}$
$3.14 \times 10^{-13} \mathrm{~m}$
b. $314 \times 10^{-6} \mathrm{pm}$ $3.14 \times 10^{-16} \mathrm{~m}$
C. $0.0314 \times 10^{4} \mathrm{~km}$
$3.14 \times 10^{5} \mathrm{~m}$
d. $31.4 \times 10^{14} \mathrm{fm}$
3.14 m
e. $3140 \times 10^{-8} \mathrm{Mm}$
31.40 m
5. Read the quantity measured in the following diagrams.

6. Calculate the gradient of the following data, giving an appropriate unit.

$13^{\text {th }}$ October

1. Calculate the length of the hypotenuse of a right-angled triangle if the opposite side to an angle of 28° is 3.6 cm .

$H=\frac{3.6}{\sin 28}=7.7 \mathrm{~cm}$
2. Read the quantity measured in the following diagrams.

3. Calculate the gradient of the following data, giving an appropriate unit.

$14^{\text {th }}$ October

1. Calculate the length of the hypotenuse of a right-angled triangle if the adjacent side to an angle of 18° is 7.8 cm .

$$
\begin{aligned}
& H=\frac{7.8}{\cos 18} \\
& H=8.2 \mathrm{~cm}
\end{aligned}
$$

2. Read the quantity measured in the following diagrams.

58.48
3. Describe and explain how the resistance of a wire changes with temperature.

$15^{\text {th }}$ October

1. Calculate $\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$ and $\cos \boldsymbol{\theta}$ for the following values of θ (to 2 d.p.).
a. 23°
b. 67°
0.39×0.92
0.92×0.39
C. 34°
0.56×0.83
d. 56°
0.83×0.56
e. 45°
$0.71-0.71$
2. Read the quantity measured in the following diagrams.

3. Sketch the standing wave formed on a string fixed at both ends:
a. First harmonic

b. Second harmonic

c. Third harmonic

d. Fourth harmonic

$16^{\text {th }}$ October
4. Write the following numbers in standard form to $\mathbf{3}$ significant figures:
a. 3600 s
b. 86400 s
$3.60 \times 10^{3} \mathrm{~s} \quad$ hour
$8.64 \times 10^{4} \mathrm{~s}$
day
C. 31556557 s
$3.16 \times 10^{7} \mathrm{~s}$ year
5. State and explain the effect of Kirchhoff's $\mathbf{1}^{\text {st }}$ law (the current law).

6. A student takes the following repeated readings of potential difference at a certain current and resistance.

Calculate the value that should be quoted for the voltage, including the absolute uncertainty in this measured value.

$$
\begin{gathered}
M_{\text {eau }}=\mathbf{9 . 2 0} \\
\text { lquore the } \\
\text { anomaly }
\end{gathered} \begin{gathered}
\text { Voltage } \\
/ v \\
9.22 \\
9.83 \\
9.25 \\
9.17 \\
9.20 \\
\hline
\end{gathered}
$$

Absolute uncertainty in
multiple radius is equal to half the range.

$$
=\frac{9.25-9.16}{2}=0.045
$$

$$
9.20 \pm 0.05 \mathrm{~V}
$$

1. Convert the following volumes into m^{3} :
a. $1.0 \mathrm{~cm}^{3}$
b. $1.0 \mathrm{~mm}^{3}$
$\left(1.0 \times 10^{-2}\right)^{3}$
$1.0 \times 10^{-6} \mathrm{~m}^{3}$
$\left(1.0 \times 10^{-3}\right)^{3}$
$1.0 \times 10^{-9} \mathrm{~m}^{3}$
C. 568 ml
$1 \mathrm{ml}=1 \mathrm{~cm}^{2}$
$5.68 \times 10^{-4} \mathrm{~m}^{3}$
d. 22.4 ltr
$1 \mathrm{ftr}=1000 \mathrm{ml}$
$2.24 \times 10^{-2} \mathrm{~m}^{3}$
2. State and explain the effect of Kirchhoff's $\mathbf{2}^{\text {nd }}$ law (the voltage law).

$$
\begin{aligned}
& \varepsilon=V_{1} \\
& \varepsilon=V_{2}
\end{aligned}
$$

(ε or E for emf)
3. In an investigation to calculate the resistance of a wire, a student measures the voltage as $12.03 \pm 0.05 \mathrm{~V}$ and the current as $0.25 \pm 0.01 \mathrm{~A}$.

Calculate the value that should be given for the resistance, including the percentage uncertainty.

$$
R=\frac{V}{I}=48.12 \approx 48 \mathrm{l}(2 \mathrm{~s})
$$

$\%$ uncertainty in $V=\frac{0.05}{12.03} \times 100=0.42 \%$
$\%$ uncertainty in $I=\frac{0.01}{0.25} \times 100=4.0 \%$
Total \% uncertainty in $R=4.0+0.42=4.4 \%$

$$
48 \Omega \pm 4.4 \%
$$

$18^{\text {th }}$ October

1. Convert the following distances into \mathbf{m} :
a. 1.609 km
b. 630 nm
c. 0.833 femtometres
d. A light-year

1609 m

$$
6.30 \times 10^{-7} \mathrm{~m}
$$

$8.33 \times 10^{-16} \mathrm{~m}$
$9.46 \times 10^{15} \mathrm{~m}$
2. Rearrange $f=\frac{1}{2 L} \sqrt{\frac{T}{\mu}}$ to make:
a. L the subject $L=\frac{1}{2 f} \sqrt{\frac{T}{\mu}}$
b. \mathbf{T} the subject

$$
T=4 f^{2} L^{2} \mu
$$

c. $\boldsymbol{\mu}$ the subject

$$
\mu=\frac{T}{4 f^{2} L^{2}}
$$

3. State the laboratory equipment required to measure the specific heat capacity of water. Include a circuit diagram and how significant sources of error can be minimised.

$19^{\text {th }}$ October
4. Convert the following masses into $\mathbf{k g}$:
a. 1 tonne
b. 240 g
C. 3560 mg
d. $937.4 \times 10^{-7} \mathrm{Mg}$

1000 kg
0.240 kg
$3.560 \times 10^{-3} \mathrm{~kg}$
93.74 kg
2. Describe what is meant by a 'force multiplier' and how we can multiply a force without violating the law of conservation of energy.

And experience a

3. Describe in detail, in terms of forces, what happens to a skydiver between the moment they jump out of a plane and the moment they reach terminal velocity.

$20^{\text {th }}$ October

1. Write down the units for:
a. Momentum
b. Resistivity
c. Electromotive force
d. Mass per unit length
 Som
V
$\mathrm{kg} \mathrm{m}^{-1}$
2. State the masses (in kg), charges (in C) and penetrating ability of alpha, beta minus and gamma radiation.

Alpha $6.64 \times 10^{-27} \mathrm{~kg}$ $+3.20 \times 10^{-11} \mathrm{C}$ Low Beta ${ }^{-} 9.11 \times 10^{-31} \mathrm{~kg} \quad-1.60 \times 10^{-14} \mathrm{C}$ Medium Gamma 0 kg

OC
High
3. Describe in detail, in terms of forces, what happens to a skydiver travelling at terminal velocity between the moment they release their parachute and the moment they reach terminal velocity again.

$21^{\text {st }}$ October

1. Calculate the angle of refraction of a wave that crosses from air into a transparent material, with a refractive index of 1.3 , at an angle of incidence of 24°.

2. Calculate the moment of a 24 N force acting at a perpendicular distance, to a pivot, of 30 cm .

$$
\begin{aligned}
& \stackrel{\Lambda}{\leftrightarrows} 0.30 \mathrm{~m} \longrightarrow \downarrow 4 \mathrm{~N} \\
& M=F d=24 \times 0.30=7.2 \mathrm{Nm}
\end{aligned}
$$

3. Calculate the gradient and intercept of the following data, giving an appropriate unit.

$22^{\text {nd }}$ October
4. Write down the charge, in coulombs, of:
a. A positron
b. An alpha particle
c. A neutron
d. An up quark

$$
\begin{aligned}
& +1.60 \times 10^{-19} c \\
& +3.20 \times 10^{-19} c \\
& 0 \\
& +1.07 \times 10^{-19} c
\end{aligned}
$$

2. Define the centre of mass of an object.

A point where the mass acts through.
3. Describe what is usually assumed to be the resistance of a wire, an ammeter and a voltmeter in any circuit question.

$$
R=0
$$

(A) $R=0$ Counted in series, so all the carat passes twang it.
(1) $R=\infty$ lomucted in paroled, with no currant going through it.

$23^{\text {rd }}$ October - Part 1

1. Draw a tangent and calculate the gradient at:
a. $x=2.5$
b. $x=5.0$

$23^{\text {rd }}$ October - Part 2

2. Calculate the area under the line between $x=0$ and $x=7.0$.

$$
5 \cdot 0+25+1 \cdot 0=31
$$

24 ${ }^{\text {th }}$ October

1. Describe what the area underneath a force-time graph represents.

The change in momentemen, or impulse of a force.
2. In A Level Physics we class waves as either progressive or stationary (standing). Describe the main difference between the two.
Prograbive - Tanager every

Stationary - Store energy
3. A battery has an e.m.f of 9.0 V and an internal resistance of 0.50Ω. The battery is in series with a bulb of resistance 10Ω.

Calculate the potential difference across the terminals of the battery.

$$
\begin{aligned}
& \varepsilon=I(R+r) \\
& I=\frac{\varepsilon}{(R+r)}=\frac{9.0}{(10+0.50)}=0.857 \mathrm{~A} \\
& \varepsilon=V+I r \\
& V=\varepsilon-I r \\
& V=9.0-(0.857 \times 0.5)=8.6 \mathrm{~V}
\end{aligned}
$$

$25^{\text {th }}$ October - Part 1

1. Calculate the acceleration at:
a. $t=2.0 \mathrm{~s}$
b. $t=6.0 \mathrm{~s}$

$25^{\text {th }}$ October - Part 2

2. Estimate the displacement between $\dagger=0.0$ and $\dagger=2.5 \mathrm{~s}$.

26 ${ }^{\text {th }}$ October

1. Calculate $\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$ for the following values of θ (to 2 d.p.).
a. 0°
0.00
b. 30°
0.58
c. 45°
1.00
d. 60°
1.73
e. 90°

Infinity
2. Describe what is meant by the terms 'path difference' and 'phase difference' for waves.

These too cars have a place differove of 10° (isis a mane cycle).
3. Calculate the refractive index of the semi-circular block.

$27^{\text {th }}$ October

$$
360^{\circ}=2 \pi \operatorname{rod} \quad 180^{\circ}=\pi \mathrm{rod}
$$

1. Convert the following angles from degrees to radians. Give your answer to 2 dip.
a. 0°
b. 30°
C. 45°
d. 60°
e. 90°
0.00 rad
0.52 rad
0.79 rad
1.05 rad
1.57 rad
2. Describe how you could find the centre of mass of a regular 2D shape.

3. Work out the time of flight for a javelin thrown with a vertical component of velocity of $20 \mathrm{~m} \mathrm{~s}^{-1}$. Ignore air resistance.

8

$u=20 \mathrm{~ms}^{-1}$
$v=0$

$t=$?
$v=u+a t$

$$
t=\frac{v-u}{a}=\frac{0-20}{-9.81}=2.04 \mathrm{~s}
$$

$$
t_{\text {todd }}=2 \times t=4.1 \mathrm{~s}
$$

$28^{\text {th }}$ October

1. Convert the following angles from degrees to radians. Give your answer to 2 dip.
a. 5°
0.09 rad
b. 57°
0.99 rad
C. 82°
1.43 rad
d. 172°
3.00 rad
e. 326°
5.69 rad
2. Describe a practical investigation you could carry out in order to find the centre of mass of an irregular 2D shape.

3. Three resistors, of resistances $10 \Omega, 20 \Omega$ and 30Ω, are connected in a circuit. Two are connected in series and one is in parallel.

Calculate the greatest resistance and the least resistance possible.

$$
\begin{gathered}
\frac{1}{R_{T}}=\frac{1}{30}+\frac{1}{10+20} \\
R_{T}=15 \Omega
\end{gathered}
$$

$$
\frac{1}{R_{T}}=\frac{1}{10}+\frac{1}{20+30}
$$

$$
R_{T}=8.3 \Omega
$$

29th October

1. Estimate the displacement during the first 8.0 s .

$30^{\text {th }}$ October

1. Draw a beautiful freehand sine curve.

2. The efficiency of a hairdryer is 87%. It is connected to a 230 V supply and draws a current of 1.0 A.

Calculate the output power of the hairdryer.

$$
\begin{aligned}
P_{\text {in }}=V I & =230 \times 1.0=230 \mathrm{~W} \\
P_{\text {att }} & =230 \times 0.87=200 \mathrm{~W}
\end{aligned}
$$

3. A cell of e.m.f 12.0 V is in series with an LDR of resistance 13.2Ω and a variable resistor set to 18.7Ω.

Draw a circuit diagram and calculate the potential difference across the LDR. Assume the cell has negligible internal resistance.

$$
V \propto R
$$

$$
V=12.0 \times\left(\frac{13.2}{13.2+18.7}\right)=4.97 \mathrm{~V}
$$

$31^{\text {st }}$ October

1. A $0.200 \mathrm{~m}^{3}$ block of copper is extruded into a wire of diameter 0.90 mm . Calculate how long it is.

$$
V=\frac{\pi d^{2} L}{4} \quad l=\frac{4 \mathrm{~V}}{\pi d^{2}}=\frac{4 \times 0.200}{\pi \times\left(0.90 \times 10^{-3}\right)^{3}}=3.1 \times 10^{5} \mathrm{~m}
$$

2. The efficiency of a bouncy ball is 0.58 . It is dropped from a height of 1.00 m . Calculate the height the ball reaches after 7 bounces.

3. Define critical angle and calculate the critical angle for a glass block with $\mathrm{n}=1.4$.
$\sin \theta_{c}=\frac{1}{n}$

$$
\begin{aligned}
& \theta_{c}=\sin ^{-1}\left(\frac{1}{1.4}\right) \\
& \theta_{c}=46^{\circ}
\end{aligned}
$$

