Gravitational Fields 1

Have a go at the following exam questions.

OCR, G484, JUNE 2011

3 (a) Define gravitational field strength.

[1]

(b) The table shows, in modern units, information that was known to physicists at the time of Isaac Newton.

position	distance <i>r</i> from centre of the Earth/km	gravitational field strength g due to the Earth/N kg ⁻¹
surface of Earth	6.4 × 10 ³	9.8
Moon's orbit	3.8 × 10 ⁵	2.7 × 10 ^{−3}

Use the information provided in the table to

(i) state a relationship between the gravitational field strength g and the distance r and verify this relationship

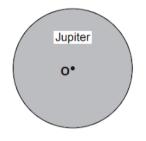
[3]

(ii) show that the mass of the Earth is about 6×10^{24} kg

[2]

(iii) determine the mean density of the Earth.

density = kg m⁻³ [2]


[Total: 8]

© OCR 2011

OCR, G484, JANUARY 2010

3 Fig. 3.1 represents the planet Jupiter. The centre of the planet is labelled as O.

Fig. 3.1

- (a) Draw gravitational field lines on Fig. 3.1 to represent Jupiter's gravitational field. [2]
- (b) Jupiter has a radius of 7.14 \times 10^7m and the gravitational field strength at its surface is $24.9\,N\,kg^{-1}.$
 - (i) Show that the mass of Jupiter is about 2×10^{27} kg.

(ii) Calculate the average density of Jupiter.

density = kg m⁻³ [2]

[Total: 7]

[3]

OCR, G484, JUNE 2012

6	(a)	(i)	State Newton's law of gravitation.
		(ii)	[2] Define gravitational field strength, g.
			[1]
	(b)		n, a moon of Saturn, has a circular orbit of radius 1.2 × 10 ⁶ km. The orbital period of Titan 6 Earth days.
		(i)	Calculate the speed of Titan in its orbit.
			speed = m s ⁻¹ [2]
		(ii)	Show that the mass of Saturn is about 5×10^{26} kg.
			[3]
	(c)		ea is another moon of Saturn with a smaller orbital radius than Titan. ermine the ratio
			orbital period T_R of Rhea orbital period T_T of Titan in terms of their orbital radii r_R , and r_T .

ratio =[2]

[Total: 10]

WJEC, 1324/01, JANUARY 2010

5.	The moon has a mass of 7.35×10^{22} kg and a radius of 1.74×10^6 m. An astronaut fires a ball of mass 2.00 kg vertically upwards from the Moon's surface at a speed of 1400 m s ⁻¹ from a cannon.						
	(a)	(i)	Calculate the gravitational field strength at the surface of the Moon.	[2]			
		(ii)	Calculate the weight of the cannon ball on the Moon's surface.	[2]			
	(b)	(i)	Calculate the initial kinetic energy of the cannon ball.	[1]			
		(ii)	Show that the initial gravitational potential energy of the cannon ball is -5.6 MJ.	[2]			
		(iii)	Apply the principle of conservation of energy to the cannon ball and calculate greatest height that the cannon ball reaches above the surface of the Moon.	the [4]			

physics online

WJEC, 1324/01, JANUARY 2012

4. The first step in deriving the relationship between the height of a satellite above the Earth's surface, *h*, and the period of its orbit around the Earth is to note that the centripetal force is provided by the gravitational force:

 $\frac{Gm_1m_2}{r^2} = m_2\omega^2 r$ Explain briefly the meaning of each term in the equation. [4] *(a)* m_1 m_2 r ω Use the above equation to derive the relationship between the height, h, of a satellite *(b)* above the Earth's surface and its orbital period, T, [4] $h + R_{\rm E} = \sqrt[3]{\frac{Gm_1T^2}{4\pi^2}}$ where $R_{\rm E}$ is the radius of the Earth. The mass of the Earth is 6.0×10^{24} kg and its radius is 6.4×10^{6} m. Calculate the height (c) of a geostationary satellite above the Earth's surface. [2] The mass of the satellite is 850 kg. Calculate the increase in its potential energy when it (d) was initially moved from the Earth's surface to the geostationary orbit. [3]

physics online