

Edexcel Physics – 9PH0

Module 8: Nuclear and Particle Physics

You should be able to demonstrate and show your understanding of:	Progress and understanding:			
	1	2	3	4
Nuclear and Particle Physics				
What is meant by nucleon number (mass number) and proton number (atomic number)				
How large-angle alpha particle scattering gives evidence for a nuclear model of the atom and how our understanding of atomic structure has changed over time				
Electrons and how they are released in the process of thermionic emission and how they can be accelerated by electric and magnetic fields				
The role of electric and magnetic fields in particle accelerators (linac and cyclotron) and detectors (general principles of ionisation and deflection only)				
The equation: $r = \frac{p}{BQ}$				
for a charge particle in a magnetic field				
The conservation of charge, energy and momentum to interactions between particles and interpret particle tracks				
Why high energies are required to investigate the structure of nucleons				
The equation: $\Delta E = c^2 \Delta m$				
In situations involved the creation and annihilation of matter / antimatter				
The use of MeV and GeV (energy) and MeV/c ² , GeV/c ² (mass) and convert between these and SI units				
Situations in which the relativistic increase in particle lifetime is significant (use of relativistic equations not required)				

You should be able to demonstrate and show your understanding of:	Progress and understanding:			
	1	2	3	4
The standard quark-lepton model particles can be classified as:				
• baryons (e.g. neutrons and protons) which are made from three quarks				
• mesons (e.g. pions) which are made from a quark and an antiquark				
• leptons (e.g. electrons and neutrinos) which are fundamental particles				
• photons				
and that the symmetry of the model predicted the top quark				
Every particle has a corresponding antiparticle and be able to use the properties of a particle to deduce the properties of its antiparticle and vice versa				
How to use laws of conservation of charge , baryon number and lepton number to determine whether a particle interaction is possible				
Particle equations, given the relevant particle symbols as well as how to interpret and write / balance them.				

