SUVAT Equations

Have a go at the following exam equations.

OCR, G481, JUNE 2009

2 Fig. 2.1 shows a graph of velocity against time for an object travelling in a straight line.

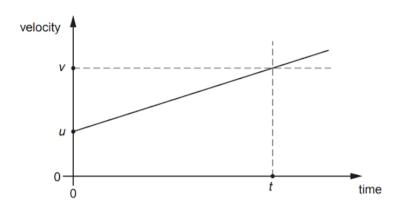


Fig. 2.1

The object has a constant acceleration a. In a time t its velocity increases from u to v.

- (a) Describe how the graph of Fig. 2.1 can be used to determine
 - (i) the acceleration a of the object

In your answer, you should use appropriate technical terms, spelled correctly.

[1]

(ii) the displacement s of the object.

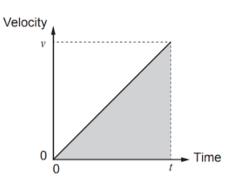
[1]

(b)	Use the graph of Fig. 2.1 to show that the displacement s of the object is given by the equation:
	$s = ut + \frac{1}{2}at^2$

[2]

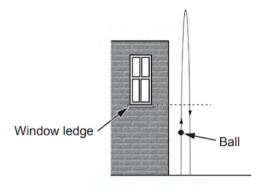
[Total: 7]

- (c) In order to estimate the acceleration g of free fall, a student drops a large stone from a tall building. The height of the building is known to be 32 m. Using a stopwatch, the time taken for the stone to fall to the ground is 2.8 s.
 - (i) Use this information to determine the acceleration of free fall.


	acceleration =ms ⁻² [2]
(ii)	One possible reason why your answer to (c)(i) is smaller than the accepted value of $9.81\mathrm{ms^{-2}}$ is the reaction time of the student. State another reason why the answer is smaller than $9.81\mathrm{ms^{-2}}$.
	[1]

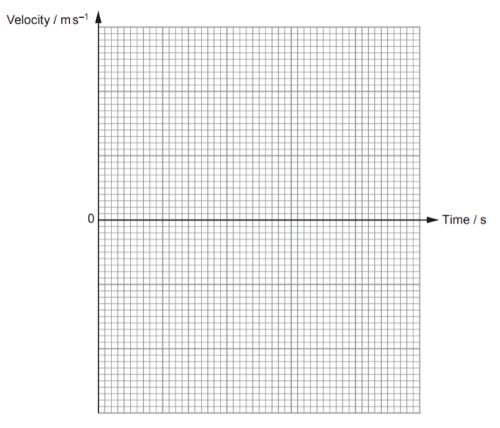
WJEC, 1321/01, JANUARY 2014

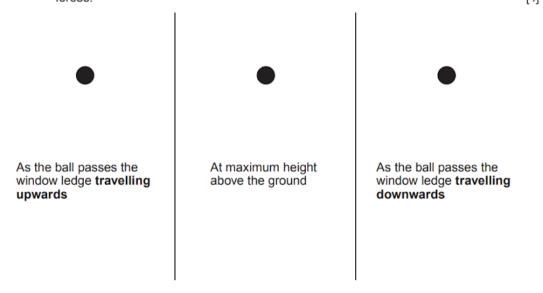
3. (a) A velocity-time graph is given for a body which is accelerating from rest in a straight line.


(i)	What does the shaded area under the graph represent?				

(ii) Use the graph to show that, using the usual symbols:

$$x = \frac{1}{2} at^2$$
 [3]


(b) A ball is thrown vertically upwards and passes a window ledge 0.3s after being released. It passes the window ledge on its way back down, 1.6s **later**. Ignore air resistance.


(i)	Determine the time of flight of the ball.	[1]
(ii)	Calculate the initial velocity of the ball when it is released.	[3]
(iii)	Calculate the height of the window ledge above the ground.	[2]

(c) Draw, on the grid below, a velocity-time graph for the whole of the ball's flight. Include suitable scales on both axes. [3]

(d) In reality, air resistance also acts on the ball. In the spaces provided draw three free body diagrams showing the forces acting on the ball at the positions indicated. Label these forces.
[4]

WJEC, 1321/01, JUNE 2013

1.	(a)	Velocity and acceleration are both vector quantities. (i) State what is meant by a vector quantity.				
		(ii)	Nam	ne one other vector quantity.	[1]	
	(b)	One	One of the equations of motion for constant acceleration is $x = ut + \frac{1}{2}at^2$.			
		(i) Show that this equation is correct in terms of units.		[3]		
					······································	
		(ii)	The	displacement x , in metres, of a car travelling in a straight line which level at a time t , in seconds, from the start of the motion is give $x = 8t + 3t^2$	ith uniform en by	
			(I)	State the initial velocity, u , of the car (at $t = 0$).	[1]	
			(II)	Determine the car's acceleration.	[1]	
			(III)	Calculate the displacement when $t = 5.0 \text{ s}$.	[1]	
			(IV)	Calculate the velocity when $t = 5.0 \mathrm{s}$.	[3]	

