30th July

- 1. Take the **natural log** (In) of both sides of these equations:
 - a. y = ne^x
 - b. $A = A_0 e^{nx}$
 - c. $D = D_0 e^{-nx}$
 - d. $D = D_0 e^{-kn}$
- 2. 100 dice were thrown into a container. Those that landed with a 1 or a 2 showing were removed. The remaining dice were thrown again and so on.

The following data was recorded:

Number of throws (n)	Number of dice remaining (D)
0	100
1	64
2	46
3	29
4	19
5	14
6	8
7	5
8	4
9	3
10	2

- a. Plot the data on the graph and draw a line of best fit
- b. Use your graph to estimate the half-life, giving it as a number to one decimal place

30th July

