$11^{\text {th }}$ May

1. A student is investigating the current-voltage characteristic of a filament bulb.

PD / V	0.0	2.0	4.0	6.0	8.0	10.0
Current / A	0.00	0.60	1.05	1.40	1.65	1.85

a. Use the data in the table to calculate the resistance when the PD is:
i. 4.0 V
ii. 8.0 V
iii. 10.0 V
b. Plot the results in the table on the axes provided.

c. Calculate $\mathbf{1}$ /gradient of the line at 8.0 V and compare this to the value of a. part ii.

$12^{\text {th }}$ May

1. A diode is connected in series with an ammeter, a resistor, and a variable power supply. A voltmeter is connected in parallel with the diode. The PD across the diode, V , is varied, including changing the polarity, and the current, I, is recorded for each value.

PD / V	-0.50	-0.25	0.00	0.20	0.50	0.60	0.64	0.68	0.70	0.72
Current $/ \mathrm{mA}$	0.0	0.0	0.0	0.0	1.0	3.0	6.0	22	40	80.0

a. Plot the data

b. Calculate the resistance of the diode at:

$$
\text { i. } 0.60 \mathrm{~V}
$$

ii. 0.70 V
c. Research how a diode can be used in half-wave and full-wave rectification for an AC supply and sketch a graph of PD against time for these two uses

