1. Calculate the angle, θ, in the triangle with an opposite side length of 6.50 m and an adjacent side length of 8.00 m .

$$
\tan \theta=\frac{0}{A}
$$

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{6.50}{8.00}\right) \\
& \theta=39.1^{\circ}
\end{aligned}
$$

2. Write the following derived unit in terms of SI Base Units (kg, m, s etc): newton

$$
\begin{aligned}
& F=m a \\
& N=k g \times m s^{-2} \\
& N=k_{g} m s^{-2}
\end{aligned}
$$

3. Describe the similarities and differences between transverse and longitudinal waves giving examples of each.

Many similar propotiver including they trunger energy and can be reflected, rofrouted and diffracted.

But any transverse waver can be polarised.
$2^{\text {nd }}$ September

1. Calculate the length of the hypotenuse of a triangle with an angle θ of 72° and an opposite side length of 5.4 cm .

$$
\begin{aligned}
& H=\frac{5.4}{\sin 72} \\
& H=5.7 \mathrm{~cm}
\end{aligned}
$$

2. Write the following derived unit in terms of SI Base Units: joule

$$
\begin{aligned}
& E_{k}=\frac{1}{2} m v^{2} \\
& J=k g \times\left(m s^{-1}\right)^{2} \\
& J=k g \times m^{2} s^{-2} \\
& J=k g m^{2} s^{-2}
\end{aligned}
$$

3. Describe the similarities and differences between mechanical and electromagnetic waves giving examples of each.
Electromagnetic waves have oscillating

Mechanical waver have oscillating particles.

$3^{\text {rd }}$ September

1. Calculate the length of the adjacent side of a triangle with an angle θ of 80° and a hypotenuse length of 0.40 m .

2. Write the following derived unit in terms of SI Base Units: volt

$$
\begin{aligned}
& V=\frac{E}{Q} Q=I t \\
& C=A \times s=A s \\
& V=\frac{I}{C}=\frac{\mathrm{kg}^{\downarrow} \mathrm{m}^{2} \mathrm{~s}^{-2}}{A s}=k g \mathrm{~m}^{2} \mathrm{~s}^{-3} A^{-1}
\end{aligned}
$$

3. State Hooke's Law and describe how it could be investigated in the lab.
$F \propto e$ provided the limit of propartianality hos not been exceeded.

- Change m
- Measure e
- Plot Fuse $\quad(F=(V=m g)$

- Gradient $=k$

WEAR EYE PROTECTION!
$4^{\text {th }}$ September

1. Calculate the length of the opposite side of a right-angled triangle if the hypotenuse is 380 mm and the adjacent side is 70 mm . Draw a diagram to help.

$$
\begin{aligned}
& 0=\sqrt{380^{2}-70^{2}} \\
& 0=373.5 \\
& 0=370 \mathrm{~mm}
\end{aligned}
$$

2. Write the following derived unit in terms of SI Base Units: pascal
$p=\frac{F}{A} \quad$ From lis September
$P_{a}=\frac{\mathrm{kgms}^{\frac{L}{2}}}{\mathrm{~m}^{2}}=\mathrm{kg} \mathrm{m}$
3. Determine $\boldsymbol{\theta}$ if $\mathrm{A}=58^{\circ}$.

$5^{\text {th }}$ September
4. Calculate the diagonal length of a square with a side length of 7.00 cm .

$$
x=\sqrt{7.00^{2}+7.00^{2}}
$$

$$
x=9.90 \mathrm{~cm}
$$

2. Write the following derived unit in terms of SI Base Units: tesla

$$
F=B I L
$$

$$
B=\frac{F}{I L}
$$

$$
T=\frac{\mathrm{kg} 火 / s^{-2}}{A \times w}
$$

3. Calculate $\boldsymbol{\theta}$ if $\mathrm{A}=23^{\circ}$.

$$
T=\operatorname{kg} s^{-2} A^{-1}
$$

$6^{\text {th }}$ September

1. Calculate, without using a calculator:
a. 3.0×10^{4} multiplied by 3.0×10^{7}
9.0×10^{11}
b. 4.0×10^{5} multiplied by 2.0×10^{7} 8.0×10^{12}
c. 3.0×10^{-2} multiplied by 3.0×10^{-7} 9.0×10^{-9} $12 \times 10^{-2}=1.2 \times 10^{-1}$
2. Define what is meant by a vector and list six vector quantities.

Maguiucue and diration
There are platy of vectors at A Level!
3. Calculate θ if $\mathrm{A}=24^{\circ}$.

$7^{\text {th }}$ September

1. Sketch a sinusoidal curve on the axis below.

2. Define the work done on an object.

Work done is equal to the farce applied multiplied by the distance moved in the direction of the fore.
3. Calculate $\boldsymbol{\theta}$ if $\mathrm{A}=19.2^{\circ}$.

$8^{\text {th }}$ September

1. Calculate the wavelength of a wave that is travelling at $520 \mathrm{~m} \mathrm{~s}^{-1}$ and has a time period of 13.0 s.

$$
\begin{array}{ll}
v=f \lambda=\frac{\lambda}{T} & \lambda=v T \\
& \lambda=520 \times 13.0 \\
& \lambda=6760 \mathrm{~m}
\end{array}
$$

2. Sketch the graph of $y=-2 x+11$.

3. Draw a sinusoidal wave on a displacement-distance graph with a wavelength of 5.0 cm and amplitude 20 mm . Label the wavelength and amplitude on your diagram.

9th September

1. State Newton's three laws of motion (from memory if you can).

- $1^{\text {st }}$ Law

- $2^{\text {nd }}$ Law

- 3rd Law

2. Form expressions for sides \mathbf{P} and \mathbf{L} in terms of θ and W.

$$
\begin{array}{ll}
\cos \theta=\frac{A}{H} & A=H \cos \theta \\
P=W \cos \theta
\end{array}
$$

$10^{\text {th }}$ September

1. Solve $\frac{1}{x}=\frac{1}{2}+\frac{1}{3}$ for \mathbf{x}.

$$
\begin{aligned}
& \frac{1}{x}=\frac{3}{6}+\frac{2}{6}=\frac{5}{6} \\
& x=\frac{6}{5}=1.2
\end{aligned}
$$

2. Find out what these numbers represent:
a. $9.11 \times 10^{-31} \mathrm{~kg}$
b. $8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$
C. $1.661 \times 10^{-27} \mathrm{~kg}$
d. $1.60 \times 10^{-19} \mathrm{C}$
e. $6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
f. $\quad 1.60 \times 10^{-19} \mathrm{~J}$

Mass of an electron
Permittivity of dree space
Atonic mass unit
Elementary charge
Planck's constant
One electronolt
3. Calculate the magnitude of P and L if $\theta=29.3^{\circ}$ and $\mathrm{W}=105$.

$$
\begin{aligned}
& P=W \cos \theta \\
& P=105 \times \cos 29.3 \\
& P=\underline{91.6} \\
& L=W \sin \theta \\
& L=105 \times \sin 29.3 \\
& L=51.4
\end{aligned}
$$

$11^{\text {th }}$ September

1. Solve $\frac{1}{x}=\frac{1}{20}+\frac{1}{60}$ for $\mathrm{x} . \quad \frac{1}{x}=\frac{60}{1200}+\frac{20}{1200}=\frac{80}{1200}=\frac{1}{15}$ $x=15$
2. Identify what the area underneath the following graphs represents:
a. A force-extension graph
Elastic potatidel everary
b. A velocity-time graph

Displacement
c. A force-time graph

Impulse or change in momentum
3. Form expressions for the parallel and perpendicular components (relative to the slope) of the block's weight, W, in terms of θ.

$12^{\text {th }}$ September

1. Solve $\frac{1}{x}=\frac{1}{45}+\frac{1}{25}+\frac{1}{15}$ for \mathbf{x}.

$$
x=\frac{1}{\frac{1}{45}+\frac{1}{25}+\frac{1}{15}}=7.8
$$

2. Identify the following electrical components:
a.

b.

LD
c.
Fuse
3. Calculate the parallel and perpendicular components of the weight of the block if it has a weight of 10.0 N and the slope is at an angle of 29.0° to the bench.

$$
\begin{aligned}
& W_{\text {perpendicular }}=W \cos \theta \\
& W_{\text {perpendicular }}=10.0 \cos 29.0=8.58 \mathrm{~N}
\end{aligned}
$$

$13^{\text {th }}$ September

1. Combine into one fraction and rearrange $\frac{1}{x}=\frac{1}{A}+\frac{1}{B}$ to make \mathbf{x} the subject.
$\begin{aligned} \frac{1}{x} & =\frac{1}{A}+\frac{1}{B} \\ \times A \quad \frac{A}{x} & =1+\frac{A}{B}\end{aligned} \quad \begin{aligned} x B \frac{A B}{x} & =B+A \\ A B & =x(B+A)\end{aligned} \quad x=\frac{A B}{A+B}$
2. Calculate the area under the graph of $y=3 x+3$ between $x=0$ and $x=3$. Sketching the graph may help.

3. Calculate the parallel and perpendicular components of the block's weight if $\mathrm{W}=710 \mathrm{~N}$ and $\theta=38^{\circ}$.

$14^{\text {th }}$ September

1. Write down a definition for an ohmic conductor.

$I \propto V(i f$ constant)

2. Complete the tip-to-tail vector diagrams by drawing in the resultant vector and working out the magnitude and direction of the resultant force.

b.

3. Draw a sinusoidal wave on a displacement-time graph with a frequency of 50 Hz and amplitude 40 mm . Label the time period and amplitude on your diagram.

$15^{\text {th }}$ September
4. Complete the circuit symbol for:
a. A thermistor

b. An LDR
C. A variable resistor

d. A fuse

e. A heater \qquad
5. Complete the vector diagram by using the parallelogram method to draw in the resultant vector. Write in its magnitude (to 1 d.p.) and angle from the vertical.
a.

6. Describe the difference between scalars and vectors and give six examples of each.

Scalas hare maguitude.
Vetoos have maguitude and diration.

$16^{\text {th }}$ September

1. Complete the circuit symbol for:
a. An ammeter

For measuring small currents
b. A voltmeter
c. A galvanometer

d. A motor \qquad
e. An LED \qquad
2. Discuss the energy changes in a ball that is dropped and then bounces.

Stores in blue
Trances in red/green
3. Calculate, using a graphical method, the size and angle to the vertical of the resultant force produced by these two perpendicular forces:
a.

b.
8.5 N

$17^{\text {th }}$ September

1. Use one of the following symbols, $<, \ll,>$ or \gg, to describe the relationship between the momentum of a flying flying squirrel and the momentum of a flying bee.

Flying swound, $u+v$ higher
$P_{\text {quid }} \gg P_{\text {pee }}$
2. Calculate the speed a 162 g hockey ball will be travelling when it hits the ground from the top of the Shard if you ignore air resistance. The Shard is 310 m tall.

Explain why, in reality, the ball will never reach this speed.

$$
\begin{aligned}
& s=310 \mathrm{~m} \\
& u=0 \mathrm{~ms}^{-1} \\
& v=? \\
& a=9.81 \mathrm{~ms}^{-2} \\
& t
\end{aligned}
$$

Drag will increase

$$
v=\sqrt{x^{2}+2 a s}
$$ until it rocker a

$$
v=\sqrt{2 \times 9.81 \times 310}
$$ temuind vdouity boer

than 78.0 ms .

$$
v=77.988=78.0 \mathrm{~ms}^{-1}
$$

3. Calculate, using a mathematical method, the size and angle to the vertical of the resultant force produced by these two perpendicular forces.
a.

b.

$18^{\text {th }}$ September

1. Write down the units for:
a. Momentum
b. Pressure
c. Activity
d. Magnetic flux density
2. An object of mass 2.0 kg is launched vertically upwards by a catapult to a height of 57 m . The catapult has a spring constant of $1800 \mathrm{~N} \mathrm{~m}^{-1}$.

Calculate the extension of the catapult to achieve this.

$$
\begin{aligned}
E_{e}=E_{p} \quad \frac{1}{2} k e^{2} & =m g \Delta h \\
e & =\sqrt{\frac{2 m g \Delta h}{k}}=\sqrt{\frac{2 \times 2.0 \times 9.81 \times 57}{1800}} \\
e & =1.1 \mathrm{~m}
\end{aligned}
$$

3. Calculate the size of the resultant force to the nearest 100 N , using scale drawing, produced by a vertical force of 8.90 kN and a horizontal force of 16.3 kN .

4. List ten types of force.

There are loads to choose from!
2. Explain why it is better to use a monochromatic light source when studying refraction.

Mono clewaratic
Single often a LASE
3. Calculate the size and direction of the resultant force, using a mathematical method, produced by an upwards vertical force of 92578 N and a horizontal force of 125287 N to the left.

$$
\begin{aligned}
& F=\sqrt{125287^{2}+92578^{2}} \\
& F=155780 \mathrm{~N} \quad \tan \theta=\frac{0}{A} \\
& \theta=\tan ^{-1}\left(\frac{125287}{92578}\right)=\frac{53.538^{\circ}}{5 s!}
\end{aligned}
$$

$20^{\text {th }}$ September

1. Rearrange the following to make $\mathbf{V}_{\mathbf{p}}$ the subject:
a. $V_{p} / V_{s}=n_{p} / n_{s}$

$$
V_{p}=V_{s} \frac{n_{p}}{n_{s}}
$$

b. $V_{p} l_{p}=V_{s} I_{s}$

$$
v_{p}=v_{s} \frac{I_{s}}{I_{p}}
$$

2. The number of turns of a transformer is 300 on the primary coil and 100 on the secondary coil. The potential difference across the primary coil is 6.0 V .

Calculate the potential difference across the secondary coil and state the type of transformer used.

$$
V_{s}=V_{p} \frac{u_{s}}{u_{p}}=6.0 \times \frac{100}{300}=2.0 \mathrm{~V}
$$

Step-down as the potactid difference decreases.
3. A 2.50 tonne Landrover is initially moving at $18 \mathrm{~m} \mathrm{~s}^{-1}$. It takes 24.0 m to come to a complete stop.

Calculate the average braking force required and describe what happens to the kinetic energy of the car as it slows down.

$$
\begin{aligned}
& W=F_{S} \\
& \qquad \begin{aligned}
W & =E_{k} \\
F_{S} & =\frac{1}{2} m v^{2} \\
F & =\frac{m v^{2}}{2 s}=\frac{2.50 \times 10^{3} \times 18^{2}}{2 \times 24.0} \\
F & =16875 \approx 1.7 \times 10^{4} \mathrm{~N}
\end{aligned}
\end{aligned}
$$

$21^{\text {st }}$ September

1. Calculate the area, in m^{2}, of a circle with:
a. Radius 2.42 mm

$$
\left\{\begin{aligned}
A=\pi r^{2} & =1.84 \times 10^{-5} \mathrm{~m}^{2} \\
& =9.85 \times 10^{-7} \mathrm{~m}^{2} \\
A=\frac{\pi d^{2}}{4} & =2.57 \times 10^{-8} \mathrm{~m}^{2} \\
& =7.74 \mathrm{~m}^{2}
\end{aligned}\right.
$$

2. Calculate the current if:
a. 300 mC of charge moves past a point every $0.50 \mathrm{~s} \quad I=\frac{Q}{t}=\frac{0.300}{0.5}=0.60 \mathrm{~A}$
b. A 20 W heater has a potential difference of 24 V across it
c. A 20 W heater has a resistance of 47Ω

$$
P=V I \quad I=\frac{P}{V}=\frac{20}{24}=\underline{0.83} \mathrm{~A}
$$

$$
P=I^{2} R \quad I=\sqrt{\frac{P}{R}}=\sqrt{\frac{20}{47}}=0.65 \mathrm{~A}
$$

3. Explain the difference between:
a. Distance and displacement

b. Speed and velocity

Scalar Vector
c. Gravity and weight

Weight is the force experienced by an object with mass in a gravitational field. Gravity is one of the four fundamental forces.
$22^{\text {nd }}$ September

1. Combine into one fraction and rearrange $1 / R_{T}=1 / R_{1}+1 / R_{2}$ to make R_{T} the subject.

$$
\begin{aligned}
& \frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \times R_{2} R_{1} R_{2} \\
&=R_{2}+R_{1} \\
& \star R_{1} \quad \frac{R_{1}}{R_{T}}=1+\frac{R_{1}}{R_{2}} \quad R_{T}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \\
& R_{1} R_{2}=R_{T}\left(R_{1}+R_{2}\right) \quad R_{T}=\frac{\text { Product }}{\text { Sum }}
\end{aligned}
$$

2. Calculate the total resistance of a 13Ω and 18Ω resistor if connected in:
a. Series

$$
R_{T}=R_{1}+R_{2}=13+18=31 d \quad R \text { increases }
$$

a. Parallel

$$
R_{T}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{13 \times 18}{13+18}=7.5 \lambda \quad R \text { decreases }
$$

3. Two cars have masses $m_{1}=1500 \mathrm{~kg}$ and $m_{2}=2000 \mathrm{~kg}$. They travel in opposite directions at $1.0 \mathrm{~m} \mathrm{~s}^{-1}$ and $6.0 \mathrm{~m} \mathrm{~s}^{-1}$ respectively. They collide and move off together.

Calculate the final velocity of the two cars after they crash.

$23^{\text {rd }}$ September

1. Calculate the gradient and \mathbf{y}-intercept of the line with equation:
a. $3 y=9 x-3$
$y=3 x-1$
$y=-3 x-1$

$$
\begin{array}{ll}
m=3 & c=-1 \\
m=-3 & c=-1 \\
m=3 & c=1 \\
m=3 & c=9
\end{array}
$$

b. $3 y+9 x=-3$
$y=-3 x-1$
c. $3 y^{2}-3 y=9 y x$
$y=3 x+1$
d. $y=3(x+3)$
$y=3 x+9$
2. Calculate the total resistance of a $13 \Omega, 20 \Omega$ and 18Ω resistor if connected in:
a. Series

$$
R_{T}=R_{1}+R_{2}+R_{3}=13+20+18=51 \mathrm{l}
$$

a. Parallel

$$
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}=\frac{1}{13}+\frac{1}{20}+\frac{1}{18} \quad R_{T}=5.5 \Omega
$$

3. A 10Ω resistor is connected to a 6.0 V battery.

Describe the effect (including values) that adding another 20Ω resistor in series has on:

a. The total resistance

$$
\begin{aligned}
& R_{T}=R=10=10 \mathrm{l} \\
& R_{T}=R_{1}+R_{2}=10+20=30 \mathrm{l}
\end{aligned}
$$

b. The current $I=\frac{V}{R_{T}}=\frac{6.0}{10}=0.60 \mathrm{~A}$

$$
I=\frac{V}{R_{T}}=\frac{6.0}{30}=0.20 \mathrm{~A}
$$ $\div 3$

c. The potential difference across each component Redder fran 6.0 V to 2.0 V and 4.0 V
$24^{\text {th }}$ September

1. Write down the units for:
a. Acceleration
b. Density
c. Spring constant

$$
\begin{aligned}
& \mathrm{ms}^{-2} \\
& \mathrm{kgm}^{-3} \\
& \mathrm{~mm}^{-1}
\end{aligned}
$$

d. Moment

Nm
2. By taking the minimum radio wave frequency as 1.0 Hz and the maximum gamma ray frequency as $1.0 \times 10^{20} \mathrm{~Hz}$, calculate the ratio between the range of visible light frequencies and the whole EM spectrum.
$V_{\text {isisible }} 400 \times 10^{-9}$ to 700×10^{-9} (data pron $12^{\text {th }}$ Anent)

$$
\frac{7.5 \times 10^{14}-4.3 \times 10^{14}}{1.0 \times 10^{20}-1.0 \times 10^{1}}=3.2 \times 10^{-6}
$$

A very small port of the EM spectrum is visible light!
3. A 10Ω resistor is connected to a 6.0 V battery.

Describe the effect (including values) that adding another 20Ω resistor in parallel has on:

a. The total resistance

$$
\begin{array}{r}
R_{T}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{10 \times 20}{30}=6.7 \mathrm{~d} \quad \text { Caupard to } \\
\\
10 \mathrm{~d} \text { before }
\end{array}
$$

b. The total current $I=\frac{V}{R_{T}}=\frac{6.0}{10}=0.60 \mathrm{~A}$

$$
I=\frac{V}{R_{T}}=\frac{6.0}{6.7}=0.90 \mathrm{~A}
$$

c. The potential difference across each component 6.0 V across every coupponat
$25^{\text {th }}$ September

1. Write down the units for:
a. Acceleration due to gravity
b. Specific heat capacity
c. Specific latent heat
d. Gravitational field strength
2. Describe how metals conduct electricity.
\qquad

3. A ray of light is shone into a block of unknown material from air at an angle of 23° to the normal and refracts at an angle of 15°. Calculate the refractive index of the material and hence the speed of light in the material.

$26^{\text {th }}$ September
4. Sketch a sinusoidal curve on the axis below.

5. Sketch the IV graph for a filament lamp, ohmic resistor and diode.

6. Calculate the gradient of the following line.

$27^{\text {th }}$ September
7. Calculate the gradient and hence the equation of the straight-line graph that goes through the points $(5,2)$ and $(9,1)$.

$$
\begin{aligned}
& m=\frac{\Delta y}{\Delta x}=\frac{1-2}{9-5}=\frac{-1}{4}=-0.25 \\
& y-2=-0.25(x-5) \\
& y=-0.25 x+3.25
\end{aligned}
$$

2. Sketch the IV graph for three different resistors of increasing resistance.

3. Calculate the gradient of the following data, giving an appropriate unit.

$28^{\text {th }}$ September

1. Calculate the equation of the straight-line graph that goes through the point $(0,4)$ and has a gradient of -0.1.

$$
\begin{aligned}
y-4 & =-0.1(x-0) \\
y & =-0.1 x+4
\end{aligned}
$$

2. Sketch the IV graph of a metal wire at a constant temperature, a red LED and a blue LED.

3. Calculate the gradient of the following data, giving an appropriate unit.

29th September

1. Write down the units for:
a. Upthrust
b. Elementary charge
c. Internal resistance
d. Frequency
2. Calculate the size and direction of the resultant force, using scale drawing, produced by vertical forces of 809 N down and 321 N up, and horizontal forces of 1.04 kN left and 432 N to the right.

3. Design and describe a sensing circuit used to operate an air conditioning unit. Your circuit should include an NTC thermistor and a fixed resistor.

$30^{\text {th }}$ September
4. Calculate the area of a circle, in m^{2}, with a :
a. Diameter of 520 mm
$0.212 \mathrm{~m}^{2}$
b. Radius of 0.67 mm
$1.4 \times 10^{-6} \mathrm{~m}^{2}$
c. Diameter of $2.3 \times 10^{9} \mathrm{~nm}$
$4.2 \mathrm{~m}^{2}$
d. Radius of $3.14 \mu \mathrm{~m}$

$$
3 \cdot 10 \times 10^{-11} \mathrm{~m}^{2}
$$

2. Write the following derived unit in terms of SI Base Units: watts

$$
\begin{gathered}
P=\frac{E}{t} \quad \text { Fran 2nd Sqtewber } \\
W=\frac{k g \mathrm{~m}^{2} s^{-2}}{s}=\mathrm{kg} \mathrm{~m}^{2} s^{-3}
\end{gathered}
$$

3. Design and describe a sensing circuit used to operate a garden light. Your circuit should include an LDR and a fixed resistor.

