31st July

1. 100 dice were thrown into a container. Those that landed with a 1 or a 2 showing were removed, and the remaining dice thrown again and so on.

The following data was recorded:

Number of throws (n)	Number of dice remaining (D)	In D
0	100	4.61
1	64	4.16
2	46	3.83
3	29	3.37
4	19	
5	14	
6	8	
7	5	
8	4	
9	3	
10	2	

It has been suggested that: $D = D_0 e^{-kn}$

D is the number of dice, D_0 was the original number of dice, n is the number of throws and k is a constant.

- a. Complete the table with values of **In D**
- b. Take the **natural log** of both sides of the equation $D = D_0 e^{-kn}$
- c. Plot a **graph** of In D against n
- d. Calculate the gradient of the line
- e. Use the value for your gradient to determine a value for ${m k}$
- f. Calculate *In2/k* and *compare* this to the value of half-life you calculated yesterday

31st July

ALevelPhysicsOnline.com