$31^{\text {st }}$ July

1. 100 dice were thrown into a container. Those that landed with a 1 or a 2 showing were removed, and the remaining dice thrown again and so on.

The following data was recorded:

Number of throws (n)	Number of dice remaining (D)	$\ln \mathrm{D}$
0	100	4.61
1	64	4.16
2	46	3.83
3	29	3.37
4	19	
5	14	
6	5	
7	4	
8	3	
9	2	
10		

It has been suggested that:
$D=D_{0} e^{-k n}$
D is the number of dice, D_{0} was the original number of dice, n is the number of throws and k is a constant.
a. Complete the table with values of $\operatorname{In} \mathbf{D}$
b. Take the natural log of both sides of the equation $D=D_{0} e^{-k n}$
c. Plot a graph of In D against n
d. Calculate the gradient of the line
e. Use the value for your gradient to determine a value for \boldsymbol{k}
f. Calculate $\ln \mathbf{2} / \boldsymbol{k}$ and compare this to the value of half-life you calculated yesterday

$31^{\text {st }}$ July

