

A Level Physics

10th May 2021 – Mixed Physics Topics

Suitable for ALL exam boards

Don't forget to **subscribe** on **YouTube** and turn on **notification** to be reminded about the **weekly livestreams** to support you as you prepare for any exams.

Question taken from:

Edexcel IAL Physics – Jan 2019 – Unit 4: Physics on the Move – Questions 1 to 10

SECTION A

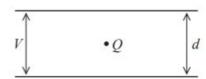
Answer ALL questions.

For questions 1–10, in Section A, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ☒ and then mark your new answer with a cross ☒.

- 1 Which of the following units is equivalent to the farad?
 - A C J⁻¹
 - B C V⁻¹
 - C JC-1

(Total for Question 1 = 1 mark)

2 A potential difference V is applied across two identical capacitors of capacitance C connected in series.


Which of the following expressions is the total energy stored on the capacitors?

- \triangle A $\frac{1}{4}$ CV^2
- \square B $\frac{1}{2}$ CV²
- C CV2
- D 2CV²

(Total for Question 2 = 1 mark)

3 Two parallel conducting plates are separated by a distance d. A potential difference V is applied between the plates and a charge Q is placed halfway between them, as shown.

Which of the following gives the magnitude of the force acting on the charge?

- A VQd
- \square B $\frac{VQ}{2d}$
- \square C $\frac{Vd}{Q}$
- \square D $\frac{VQ}{d}$

(Total for Question 3 = 1 mark)

4 A current-carrying wire is placed perpendicular to a magnetic field of magnetic flux density 0.05 T. The length of the wire in the field is 10 cm and the force on the wire is 2×10^{-3} N.

Which of the following is the current in the wire?

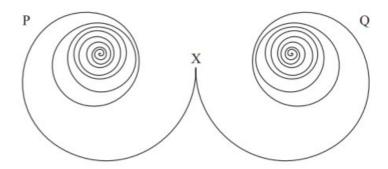
- \triangle A 1×10^{-5} A
- **■ B** 1×10^{-3} **A**
- \square **D** 4×10^{-1} A

(Total for Question 4 = 1 mark)

5 Which row of the table shows the quark structures of a meson and its anti-meson?

	meson	anti-meson
⊠ A	ū d	u d
ВВ	u d	d u
□ C	u u d	ū u d̄
■ D	u u d	$\overline{u}\overline{u}\overline{d}$

(Total for Question 5 = 1 mark)


6 A particle has mass 3.4 GeV/c².

Which of the following gives the mass of the particle inkg?

- \triangle A $3.4 \times 10^9 \times 1.6 \times 10^{-19} / 3 \times 10^8$
- **B** $3.4 \times 10^9 / 1.6 \times 10^{-19} \times (3 \times 10^8)^2$
- \bigcirc C $3.4 \times 10^9 \times 1.6 \times 10^{-19} \times (3 \times 10^8)^2$
- **D** $3.4 \times 10^9 \times 1.6 \times 10^{-19} / (3 \times 10^8)^2$

(Total for Question 6 = 1 mark)

7 The diagram shows the tracks of two particles, P and Q, created from an original particle at point X.

Which of the following can be concluded from this diagram?

- A P and Q have equal and opposite momentum.
- B The original particle had no charge.
- C The original particle was stationary.
- D There is a magnetic field acting into the page.

(Total for Question 7 = 1 mark)

8 The drum of a washing machine rotates at a rate of 1200 rotations per minute.

What is its angular velocity in radians per second?

- ☑ A 20
- B 63
- D 191

(Total for Question 8 = 1 mark)

9	A body of mass m has momentum p and kinetic energy E_{K} .		
	Which of the following is the kinetic energy of a body of mass $2m$ and momentum $2p$?		
	$oxed{\square}$ A $E_{ m K}$		
	$oxed{oxed}$ B 2 $E_{ m K}$		
	\square C 4 $E_{\rm K}$		
	\square D 8 E_{K}		
	(Total for Question $9 = 1 \text{ mark}$)		
10	Electrons can be used to investigate atomic nuclei.		
	Which of the following is not a reason why electrons can be used for such an investigation?		
	☑ A Electrons can be accelerated to very high speeds.		
	☑ B Electrons can have wavelengths similar to the size of atomic nuclei.		
	C Electrons have negative charge.		
	☑ D Electrons undergo diffraction.		
	(Total for Question $10 = 1 \text{ mark}$)		

TOTAL FOR SECTION A = 10 MARKS

