
Projectile Motion 2

Have a go at the following exam equations.

OCR, G481, JUNE 2012

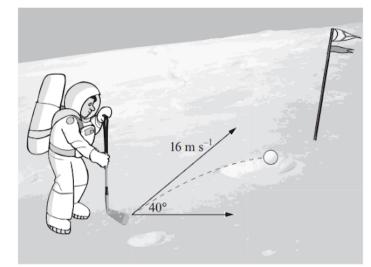
2 Fig. 2.1 shows the path of a metal ball fired at a velocity of 24 m s⁻¹ at an angle of 30° to the horizontal.

Air resistance has negligible effect on the motion of the metal ball. The ball is fired from point A and it reaches its maximum height at point B. The mass of the ball is 450 g.

- (a) State the direction of the acceleration of the ball during its flight.
 -[1]
- (b) Calculate the horizontal and vertical components of the velocity of the ball at A.

	horizontal velocity = ms ⁻¹
	vertical velocity = ms ⁻¹ [2]
(c)	Explain why the gravitational potential energy gained by the ball as it moves from A to B is not equal to its initial kinetic energy at A .
	[1]

(d) Calculate the maximum vertical height *h* of the ball.


h = m [3]

[Total: 7]

WJEC, 1321/01, JUNE 2012

5. The astronauts of Apollo 14 played golf on the Moon. They struck a number of shots such as the one shown below.

(a) (i) Calculate the horizontal and vertical components of velocity of the golf ball at the instant it was struck. [2]

(ii) Describe the essential difference between the horizontal and vertical components of velocity during the flight of the ball. [1]

<i>(b)</i>	The acceleration due to gravity on the Moon is $1.6 \mathrm{m}\mathrm{s}^{-2}$. Assuming the shot is played on horizontal ground, calculate		
	(i) the total time of flight,	[3]	
	(ii) the horizontal distance the ball travels,	[1]	
	(iii) the maximum height reached.	[2]	
(c)	A similar golf shot is played on Earth. Give two reasons why your answer to	<i>(b)</i> (iii)	
	would be different.	[2]	
	2.		

EDEXCEL, 6PH01/01, JUNE 2009

18 Champagne bottles are often opened by 'firing' the cork out of the bottle. The world record for the horizontal distance travelled by a fired cork is 53 m.

The high pressure inside the bottle produces an average force of 150 N on the cork as it leaves the bottle. This force acts on the cork over a distance of 2.5×10^{-2} m.

(a) Show that the work done on the cork is about 4 J.

(2)

(b) Calculate the maximum speed at which the cork could leave the bottle.

mass of cork = $7.5 \times 10^{\text{--}3} \text{kg}$

(2)

Speed =

	The cork is fired from ground level at an angle of 40° to the horizontal with a speed of 32 m s^{-1} .	
((i) Show that the vertical component of the velocity is about 20 m s^{-1} .	(1)
((ii) Calculate the horizontal distance travelled by the cork through the air.	(5)
	Distance =	
	Suggest an explanation for the difference between your calculated value and the world record distance.	
		(2)

(Total for Question 18 = 12 marks)