

🔾 A Level Physics Online

Edexcel Physics – 9PH0

Module 6: Further Mechanics

You should be able to demonstrate and show your understanding of:	Progress and understanding:			
	1	2	3	4
Further Mechanics				
How to use the equation:				
$Impulse = F\Delta t = \Delta p$				
$Imputse = r\Delta t = \Delta p$ CORE PRACTICAL 9: Investigate the relationship between the force exerted				
on an object and its change in momentum				
How to apply conservation of linear momentum to problems in two dimensions				
CORE PRACTICAL 10: Use ICT to analyse collisions between small spheres, e.g. ball bearings on a table top				
How to determine whether a collision is elastic or inelastic				
How to derive and use the equation:				
$E_k = \frac{p^2}{2m}$				
for kinetic energy of a non-relativistic particle				
Angular displacement in radians and degrees and how to convert between these units using the equations:				
$Degrees \rightarrow Radians: Degrees \times \frac{\pi}{180}$				
Radians \rightarrow Degrees: Radians $\times \frac{180}{\pi}$				
Angular velocity and how to use the equations:				
$v = \omega r \ and \ T = \frac{2\pi}{\omega}$				
Vector diagrams to derive equations for centripetal acceleration:				
$a = \frac{v^2}{r} = r\omega^2$				

You should be able to demonstrate and show your understanding of:	Progress and understanding:			
	1	2	3	4
Resultant force (centripetal force) and that it is required to produce and maintain circular motion				
The equations for centripetal force:				
$F = ma = \frac{mv^2}{r} = mr\omega^2$				

