

AQA Physics - 7407/7408

Module 9: Astrophysics

You should be able to demonstrate and show your understanding of:	Progress and understanding:				
		2	3	4	
9.1 Telescopes					
9.1.1 Astronomical telescope consisting of two converging lenses					
Ray diagram to show the image formation in normal adjustment.					
Angular magnification in normal adjustment.					
M = angle subtended by image at eye / angle subtended by object at unaided eye					
Focal lengths of the lenses.					
$M = f_0/f_e$					
9.1.2 Reflecting telescopes				<u> </u>	
Cassegrain arrangement using a parabolic concave primary mirror and convex secondary mirror.					
Ray diagram to show path of rays through the telescope up to the eyepiece.					
Relative merits of reflectors and refractors including a qualitative treatment of spherical and					
9.1.3 Single dish radio telescopes, I-R, U-V and X-ray telescopes					
Similarities and differences of radio telescopes compared to optical telescopes. Discussion should include structure, positioning and use, together with comparisons of resolving and collecting powers.					
9.1.4 Advantages of large diameter telescopes	ı	-			
Minimum angular resolution of telescope.					
Rayleigh criterion:					
θ ≈ λ / D					
Comparison of the eye and CCD as detectors in terms of quantum efficiency, resolution and convenience of use.					

You should be able to demonstrate and show your understanding of:		Progress and understanding:					
		2	3	4			
No knowledge of the structure of the CCD is required.							
9.2 Classification of stars							
9.2.1 Classification by luminosity							
Apparent magnitude, m.							
The Hipparcos scale.							
Dimmest visible stars have a magnitude of 6.							
Relation between brightness and apparent magnitude. Difference of 1 on magnitude scale is equal to an intensity ratio of 2.51.							
Brightness is a subjective scale of measurement.							
9.2.2 Classification by luminosity							
Parsec and light year.							
Definition of <i>M</i> , relation to <i>m</i> :							
$m-M=5\log (d/10)$							
9.2.3 Classification by temperature, black-body radiation							
Stefan's law and Wien's displacement law.							
General shape of black-body curves, use of Wien's displacement law to estimate black-body temperature of sources.							
Experimental verification is not required.							
$\lambda_{max}T = constant = 2.9 \times 10^{-3} \text{ m K}$							
Assumption that a star is a black body.							
Inverse square law, assumptions in its application.							
Use of Stefan's law to compare the power output, temperature and size of stars							
$P = \sigma A T^4$							

You should h	e able to demonstr	rate and show your u	inderstanding of:	Progress and understanding:			
				1	2	3	4
9.2.4 Principles	of the use of ste	llar spectral classes	i				
Spectral class	Intrinsic colour	Temperature / K	Prominent absorption lines				
0	blue	25 000 – 50 000	He ⁺ , He, H				
В	blue	11 000 – 25 000	He, H				
A	blue-white	7 500 – 11 000	H (strongest)				
			ionized metals				
F	white	6 000 – 7 500	ionized metals				
G	yellow-white	5 000 – 6 000	ionized & neutral metals				
K	orange	3 500 – 5 000	neutral metals				
M	red	< 3 500	neutral atoms, TiO				
absorption lines:	·	spectra limited to Hy coms in an n = 2 state IR) diagram	~				
General shape: r	nain sequence, dwa	arfs and giants.					
•	e from –10 to +15 (a ture) or OBAFGKM	bsolute magnitude) a (spectral class).	and 50 000 K to				
Students should	be familiar with the	e position of the Sun	on the HR diagram.				
Stellar evolution formation to wh	•	lar to our Sun on the	HR diagram from				
9.2.6 Supernov	ae, neutron stars	and black holes					
•	•	n absolute magnitud stars; escape velocit	•				
Gamma ray burs stars or black ho	•	se of supergiant stars	s to form neutron				
Comparison of e	nergy output with t	otal energy output o	f the Sun.				
• •	•	ard candles to deterr g Universe and dark e					
		e light curve of typica					
supernovae.							

You should be able to demonstrate and show your understanding of:		Progress and					
		understanding:					
		2	3	4			
Supermassive black holes at the centre of galaxies.							
Calculation of the radius of the event horizon for a black hole, Schwarzschild							
radius (R _s)							
$R_S \approx 2GM/c^2$							
9.3 Cosmology							
9.3.1 Doppler effect							
$\Delta f/f = v/c$ and $z = \Delta \lambda/\lambda = -v/c$ for $v \ll c$ applied to optical and radio							
frequencies.							
Calculations on binary stars viewed in the plane of orbit.							
Calculations on binary stars viewed in the plane of orbit.							
Galaxies and quasars.							
9.3.2 Hubble's law							
Red shift $v = Hd$							
Cincula interpretation as appropriate of projection at an of an of							
Simple interpretation as expansion of universe; estimation of age of universe, assuming <i>H</i> is constant.							
universe, assuming mis constant.							
Qualitative treatment of Big Bang theory including evidence from							
cosmological microwave background radiation, and relative abundance of							
hydrogen and helium.							
9.3.3 Quasars							
Quasars as the most distant measurable objects.							
Discovery of quasars as bright radio sources.							
Discovery of quasars as bright radio sources.							
Quasars show large optical red shifts; estimation involving distance and							
power output.							
Formation of quasars from active supermassive black holes.							
9.3.4 Detection of exoplanets							
Difficulties in the direct detection of exoplanets.							
Detection techniques will be limited to variation in Doppler shift (radial							
velocity method) and the transit method.							
The stand Parks are as							
Typical light curve.							

